Mostrar el registro sencillo del recurso

dc.coverage.spatialInvestigación aplicada
dc.creatorJAVIER ARMANDO JIMENEZ VILLAFAÑA
dc.creatorANABEL MARTÍN GONZALEZ
dc.creatorVICTOR EMANUEL DE ATOCHA UC CETINA
dc.creatorARTURO ESPINOSA ROMERO
dc.date2017-10-18
dc.date.accessioned2018-10-04T15:08:16Z
dc.date.available2018-10-04T15:08:16Z
dc.identifierhttp://ieeexplore.ieee.org/document/8071247/?reload=true
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/778
dc.description.abstractThe Mexican Sign Language (LSM) is a language of the deaf Mexican community, which consists of a series of gestural signs articulated by hands and accompanied with facialexpressions. The lack of automated systems to translate signs from LSM makes integration of hearing-impaired people to society more difficult. This work presents a new method for LSM alphanumerical signs recognition based on 3D Haar-like featuresextracted from depth images captured by the Microsoft Kinect sensor. Features are processed with a boosting algorithm. To evaluate performance of our method, we recognized a set of signs from letters and numbers, and compared the results with the useof traditional 2D Haar-like features. Our system is able to recognize static LSM signs with a higher accuracy rate than theone obtained with widely used 2D features.
dc.languagespa
dc.publisherIEEE Latin America Transactions
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1548-0992
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.subjectBoosting
dc.subjectGesture recognition
dc.subjectSign language
dc.subjectMachine learning
dc.subject3D Haar-like features
dc.titleMexican sign language alphanumerical gestures recognition using 3D haar-like features
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso