Mostrar el registro sencillo del recurso

dc.coverage.spatialInvestigación aplicada
dc.creatorVICTOR EMANUEL DE ATOCHA UC CETINA
dc.creatorFRANCISCO JOSE MOO MENA
dc.creatorRAFAEL HERNANDEZ UCAN
dc.date2014-10-14
dc.date.accessioned2018-10-04T15:08:16Z
dc.date.available2018-10-04T15:08:16Z
dc.identifierhttp://dx.doi.org/10.1155/2015/545308
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/774
dc.description.abstractWe propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.
dc.languageeng
dc.publisherThe Scientific World Journal
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:2356-6140
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.titleComposition of Web Services Using Markov Decision Processes and Dynamic Programming
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso