Mostrar el registro sencillo del recurso

dc.coverage.spatialGeneración de conocimiento
dc.creatorJOSE MATIAS NAVARRO SOZA
dc.creatorOSCAR ALFREDO PALMAS VELASCO
dc.creatorDIDIER ADAN SOLIS GAMBOA
dc.date2014-01-31
dc.date.accessioned2018-10-04T15:08:15Z
dc.date.available2018-10-04T15:08:15Z
dc.identifierhttps://doi.org/10.1016/j.geomphys.2013.10.005
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/758
dc.description.abstractThe present work is divided into three parts. First we study the null hypersurfaces of the Minkowski space R1n+2, classifying all rotation null hypersurfaces in R1n+2. In the second part we start our analysis of the submanifold geometry of the null hypersurfaces. In the particular case of the (n+1)-dimensional light cone, we characterize its totally umbilical spacelike hypersurfaces, show the existence of non-totally umbilical ones and give a uniqueness result for the minimal spacelike rotation surfaces in the 3-dimensional light cone. In the third and final part we consider an isolated umbilical point on a spacelike surface immersed in the 3-dimensional light cone of R14 and obtain the differential equation of the principal configuration associated to this point, showing that every classical generic Darbouxian principal configuration appears in this context.
dc.languageeng
dc.publisherJournal of Geometry and Physics
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:0393-0440
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.subjectNull hypersurfaces
dc.subjectMinimal hypersurfaces
dc.subjectDifferential–algebraic equations
dc.subjectUmbilics
dc.subjectPrincipal configurations
dc.titleOn the geometry of null hypersurfaces in Minkowski space
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso