Mostrar el registro sencillo del recurso
On semigeneric tameness under base field extension
dc.coverage.spatial | Generación de conocimiento | |
dc.creator | JESUS EFREN PEREZ TERRAZAS | |
dc.date | 2016-01-31 | |
dc.date.accessioned | 2018-10-04T15:08:13Z | |
dc.date.available | 2018-10-04T15:08:13Z | |
dc.identifier | https://doi.org/10.1017/S0017089515000051 | |
dc.identifier.uri | http://redi.uady.mx:8080/handle/123456789/736 | |
dc.description.abstract | The notions of central endolength and semigeneric tameness are introduced, and their behaviour under base field extension for finite-dimensional algebras over perfect fields are analysed. For k a perfect field, K an algebraic closure and A a finite-dimensional k-algebra, here there is a proof that is semigenerically tame if and only if A ⊗k K is tame. | |
dc.language | eng | |
dc.publisher | Glasgow Mathematical Journal | |
dc.relation | citation:0 | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.source | urn:issn:0017-0895 | |
dc.subject | info:eu-repo/classification/cti/1 | |
dc.subject | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.subject | info:eu-repo/classification/cti/7 | |
dc.subject | INGENIERÍA Y TECNOLOGÍA | |
dc.title | On semigeneric tameness under base field extension | |
dc.type | info:eu-repo/semantics/article |
Archivos en el recurso
Este recurso aparece en la(s) siguiente(s) colección(ones)
-
Artículos [523]