Mostrar el registro sencillo del recurso

dc.contributorCODE DIOP
dc.contributorERNESTO EXPOSITO
dc.coverage.spatialGeneración de conocimiento
dc.creatorJOSE ROBERTO ENRIQUE KOH DZUL
dc.creatorMARIANO VARGAS SANTIAGO
dc.creatorFRANCISCO JOSE MOO MENA
dc.creatorJORGE RICARDO GOMEZ MONTALVO
dc.date2014-08-31
dc.date.accessioned2018-10-04T15:08:11Z
dc.date.available2018-10-04T15:08:11Z
dc.identifierhttp://www.jsoftware.us/vol9/jsw0908-25.pdf
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/693
dc.description.abstractThe growing complexity and scale of systems implies challenges to include Autonomic Computing capabilities that help maintaining or improving the performance, availability and reliability of nowadays systems. In dynamic environments, the systems have to deal with changing conditions and requirements; thereby the autonomic features need a better technique to analyze and diagnose problems, and learn about the functioning conditions of the managed system. In the medical diagnostic area, the tests have included statistical and probabilistic models to aid and improve the results and select better medical treatments. We propose a probabilistic approach to implement an analysis process. The base of our approach is building a Bayesian network as model representing runtime properties of the Managed Element and their relationships. The Bayesian network is initially built from monitored data of an Enterprise Service Bus platform under different workload conditions, by means a structure learning algorithm. We aim to improve the functionalities of an Enterprise Service Bus platform integrating monitoring and fault diagnosis capabilities. A case study is presented to prove the effectiveness of our approach.
dc.languageeng
dc.publisherJournal of Software
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1796-217x
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.subjectAutonomic computing
dc.subjectBayesian network
dc.subjectProbabilistic reasoning
dc.subjectDiagnostic
dc.subjectMachine learning
dc.subjectSOA
dc.titleImproving ESB capabilities through diagnosis based on bayesian networks and machine learning
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso