Mostrar el registro sencillo del recurso

dc.coverage.spatialGeneración de conocimiento
dc.creatorVICTOR MANUEL BAUTISTA ANCONA
dc.creatorJAVIER ARTURO DIAZ VARGAS
dc.creatorJOSE ALEJANDRO LARA RODRIGUEZ
dc.creatorFRANCISCO XAVIER PORTILLO BOBADILLA
dc.date2017-12-31
dc.date.accessioned2018-10-04T15:08:05Z
dc.date.available2018-10-04T15:08:05Z
dc.identifierhttp://dx.doi.org/10.17654/NT039061003
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/597
dc.description.abstractWe work out in detail the Drinfeld module over the ring A = F2 [x, y] / (y2 + y = x3 + x + 1). The example in question is one of the four examples that come from quadratic imaginary fields with class number h = 1 and rank one. We develop specific formulas for the coefficients dk and lk of the exponential and logarithmic functions and relate them with the product Dk of all monic elements of A of degree k. On the Carlitz module, Dk and dk coincide, but this is not true for general Drinfeld modules. On this example, we obtain a formula relating both invariants. We prove also using elementary methods a theorem due to Thakur that relate two different combinatorial symbols important in the analysis of solitons.
dc.languageeng
dc.publisherJP Journal of Algebra, Number Theory and Applications
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:0972-5555
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectDrinfeld module
dc.subjectExponential
dc.subjectLogarithmic functions
dc.titleA description of a Drinfeld module with class number h = 1 and rank 1
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso