Mostrar el registro sencillo del recurso

dc.contributorDINESH THAKUR
dc.coverage.spatialGeneración de conocimiento
dc.creatorJOSE ALEJANDRO LARA RODRIGUEZ
dc.date2016-01-31
dc.date.accessioned2018-10-04T15:08:04Z
dc.date.available2018-10-04T15:08:04Z
dc.identifierhttps://doi.org/10.1016/j.ffa.2015.10.006
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/595
dc.description.abstractIn contrast to the ‘universal’ multizeta shuffle relations, when the chosen infinite place of the function field over Fq is rational, we show that in the non-rational case, only certain interesting shuffle relations survive, and the Fq-linear span of the multizeta values does not form an algebra. This is due to the subtle interactions between the larger finite field F∞, the residue field of the completion at infinity where the signs live and Fq, the field of constants where the coefficients live. We study the classification of these special relations which survive.
dc.languageeng
dc.publisherFinite Fields and Their Applications
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:1071-5797
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectMultizeta
dc.subjectDrinfeld modules
dc.subjectt-Motives
dc.subjectPeriods
dc.titleMultizeta shuffle relations for function fields with non rational infinite place
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso