Mostrar el registro sencillo del recurso

dc.contributorADRIANA CAROLINA SANABRIA BORBON
dc.contributorDOUGLAS ALLAIRE
dc.contributorEDGAR SANCHEZ SINENCIO
dc.coverage.spatialInvestigación aplicada
dc.creatorSERGIO SOTO AGUILAR
dc.creatorJOHAN JAIR ESTRADA LOPEZ
dc.date2020-04-23
dc.date.accessioned2021-06-22T17:37:22Z
dc.date.available2021-06-22T17:37:22Z
dc.identifierhttps://www.mdpi.com/2079-9292/9/4/685
dc.identifier.urihttp://redi.uady.mx:8080/handle/123456789/4750
dc.description.abstractOptimization algorithms have been successfully applied to the automatic design of analog integrated circuits. However, many of the existing solutions rely on expensive circuit simulations or use fully customized surrogate models for each particular circuit and technology. Therefore, the development of an easily adaptable low-cost and efficient tool that guarantees resiliency to variations of the resulting design, remains an open research area. In this work, we propose a computationally low-cost surrogate model for multi-objective optimization-based automated analog integrated circuit (IC) design. The surrogate has three main components: a set of Gaussian process regression models of the technology’s parameters, a physics-based model of the MOSFET device, and a set of equations of the performance metrics of the circuit under design. The surrogate model is inserted into two different state-of-the-art optimization algorithms to prove its flexibility. The efficacy of our surrogate is demonstrated through simulation validation across process corners in three different CMOS technologies, using three representative circuit building-blocks that are commonly encountered in mainstream analog/RF ICs. The proposed surrogate is 69X to 470X faster at evaluation compared with circuit simulations.
dc.languageeng
dc.publisherElectronics
dc.relationcitation:0
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.sourceurn:issn:2079-9292
dc.subjectinfo:eu-repo/classification/cti/1
dc.subjectCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.subjectinfo:eu-repo/classification/cti/7
dc.subjectINGENIERÍA Y TECNOLOGÍA
dc.subjectSurrogate model
dc.subjectOptimization algorithms
dc.subjectAnalog integrated circuit design
dc.subjectGaussian process regression
dc.subjectProcess variations
dc.subjectPhysics-based MOSFET model
dc.subjectInversion level
dc.subjectPareto front
dc.subjectActive filters
dc.subjectVoltage regulators
dc.subjectOscillators
dc.titleGaussian-process-based surrogate for optimization-aided and process-variations-aware analog circuit design
dc.typeinfo:eu-repo/semantics/article


Archivos en el recurso

Thumbnail

Este recurso aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del recurso