Hindawi Publishing Corporation

The Scientific World Journal

Volume 2015, Article ID 545308, 9 pages
http://dx.doi.org/10.1155/2015/545308

Research Article

Hindawi

Composition of Web Services Using Markov Decision
Processes and Dynamic Programming

Victor Uc-Cetina, Francisco Moo-Mena, and Rafael Hernandez-Ucan

Facultad de Matematicas, Universidad Autonoma de Yucatdan, Anillo Periférico Norte, Tablaje Cat. 13615, Apartado Postal 192,

Colonia Chuburna Hidalgo Inn, 97119 Mérida, YUC, Mexico

Correspondence should be addressed to Victor Uc-Cetina; uccetina@uady.mx

Received 26 June 2014; Revised 17 September 2014; Accepted 14 October 2014

Academic Editor: Ahmad T. Azar

Copyright © 2015 Victor Uc-Cetina et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation,
value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The
experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms
of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our
experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid
composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200
seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services
requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning
algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy

iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.

1. Introduction

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a net-
work, with an interface described in a machine-processable
format called Web Services Description Language [1]. A Web
service is typically modeled as a software component that
implements a set of operations. The emergence of this type
of software components has created unprecedented opportu-
nities to establish more agile collaborations between organi-
zations, and as a consequence, systems based on Web services
are growing in importance for the development of distributed
applications designed to be accessed via the Internet.

When a Web service is requested, all available Web
services descriptions must be matched with the requested
description, so that an appropriate service with the desired
functionality can be found. However, since the number of
available Web services is continuously growing year by year,
finding the best match is not a trivial problem anymore,
especially if we take into account that the matching criteria

must consider not only the desired functionality, but also
other attributes such as execution cost, security, performance,
and so forth.

If individual Web services are not able to meet complex
requirements, they can be combined to create composite
services [2]. A composite Web service has one initial task
and one ending task, and between the initial and the ending
tasks there can be k = {0,1,2,...,K} individual tasks
connected in sequential order. To create a composite Web
service it is necessary to discover and select the most suitable
services. The complexity of WSC involves three main factors:
(1) the large number of dynamic Web Services instances
with similar functionality that may be available to a complex
service; (2) the different possibilities of integrating service
instance components into a complex service process; (3)
various performance requirements (e.g., end-to-end delay,
service cost, and reliability) of a complex service.

L1 Related Work. Some approaches to solve the WSC prob-
lem have focused on different graph-based algorithms [3-8].

Some others have proposed to use optimization methods spe-
cially designed for solving constraint satisfaction problems,
such as integer programming [9], linear programming [10],
or methods for solving the knapsack problem [11]. Artificial
intelligence methods such as planning algorithms [12-14], ant
colony optimization [15], fuzzy sets [2], and binary search
trees [16] have been used too.

The use of methods based on Markov decision processes
(MDPs) for the composition problem is certainly not new.
In [17], the problem of workflow composition is modeled
as a MDP and a Bayesian learning algorithm is used to
estimate the true probability models involved in the MDP.
In [18], the WSC is solved using QoS attributes in a MDP
framework with two versions of the value iteration algorithm:
one backward and recursive and one forward version. In
[19], the authors proposed the use of what they call value of
changed information. Their approach uses MDPs focusing on
changes of the state transition function, in order to anticipate
values of the service parameters that do not change the WSC.
In [20], a combination of MDPs and HTN (Hierarchical Task
Network) planning is proposed.

Solutions based on reinforcement learning are also rele-
vant. For instance, in [21], reinforcement learning and prefer-
ence logic were employed together to solve the WSC problem,
obtaining some kind of qualitative solution. Authors argue
that computing a qualitative solution has many advantages
over a quantitative one. Other methods using Q-learning
are given in [22-24]. It is important to remember that
reinforcement learning methods [25] belong to a family of
algorithms highly related to the MDPs. The main difference
with these methods is that the state transition function is
assumed to be unknown and therefore the agents need to
explore their state and action spaces by executing different
actions in different states and observe the numerical rewards
obtained after each state transition.

1.2. Contributions of This Paper. The goal of automatic WSC
is to determine a sequence of Web services that can be
combined to satisfy a set of predefined QoS constraints. For
problems where we need to find the sequence of actions
maximizing an overall performance function, the MDPs are
one of the most robust mathematical tools that we can use.
Therefore, in this paper we propose an MDP model to solve
the WSC problem. To show the reliability of our model,
we conducted experiments with three of the most stud-
ied algorithms: policy iteration, iterative policy evaluation,
and value iteration. Although all three algorithms provided
good solutions, the policy iteration algorithm required the
minimum number of iterations to converge to the optimal
solutions. We also compared these three algorithms against
sarsa and Q-learning, showing that the latter methods require
one or two orders of magnitude and more time to solve
composition problems of the same complexity.

This paper is structured as follows. Section 2 provides
the basics of the MDPs framework and introduces the three
algorithms that we tested. Section 3 introduces our MDP
model for solving the WSC problem. Section 4 describes the
experimental setup and presents the most relevant results.
Section 5 presents comparative experiments with sarsa and

The Scientific World Journal

Q-learning algorithms. Finally, Section 6 concludes this paper
by discussing the main findings and providing some advice
for future research.

2. Markov Decision Processes

The WSC problem can be abstracted as the problem of select-
ing a sequence of actions, in such a way that we maximize an
overall evaluation function. Such kind of sequential decision
problems can be defined and solved in an MDP framework.
An MDP is a tuple (S, A, P,y, R), where S is a set of states,
A is a set of actions, P(s,,; | s;,a,) are the state transition
probabilities for all states s,,s,,; € S and actions a € A,
y € [0,1) is a discount factor,and R : Sx A — R is the
reward function.

The MDP dynamics is the following. An agent in state
s, € S performs an action g, selected from the set of actions
A. As a result of performing action a,, the agent receives a
reward with expected value R(s,, a,) and the current state of
the MDP transitions to some successor state s, ;, according
to the transition probability P(s,,; | s, a,). Once in state
s.,1 the agent chooses and executes an action a,,,, receiving
reward R(s,,,, a,,,) and moving to state s, ,. The agent keeps
choosing and executing actions, creating a path of visited
states s;, 8,15 S405 - - -

As the agent goes through states, sy, s;,5,,.. ., it obtains
the following rewards:
R(s9,a9) + YR (s, ;) + V'R (5,,) + -+, @

The reward at timestep ¢ is discounted by a factor of y*. By
doing so, the agent gives more importance to those rewards
obtained sooner. In an MDP we try to maximize the sum of
expected rewards obtained by the agent:

E[R(so,ao)+yR(sl,a1)+y2R(52,a2)+-~]. (2)

A policy is defined as a function 7 : S — A mapping
from the states to the actions. A value function for a policy
7 is the expected sum of discounted rewards, obtained by
performing always the actions provided by 7:

V*(s)=E [R (50,7 (50)) + YR (51,7 (s1))
(€)

+9°R (55,7 (55)) + - | 5o :s,n].

V"™ is the expected sum of discounted rewards that the
agent would receive if it starts in state s and takes actions given
by 7. Given a fixed policy 7, its value function V" satisfies the
Bellman equation:

V"(s):R(s,n(s))+yZP(s' Is,ﬂ(s))V"(s'). (4)

s'eS
The optimal value function is defined as

V™ (s) = m;le" (s). (5)

The Scientific World Journal

(1) foreach state do
2) V(s)«—0

(3) end

(4) repeat

(5) foreach state do

acA
(7) end
(8) until convergence

© Vi — Y rsa|Rea+yY P(s 1sa) V()

s'es

ALGORITHM I: Iterative policy evaluation.

(1) initialize 7, randomly
(2) repeat

(4) foreach state do

(6) end
(7) until convergence

(3) Vie—R(s,m(s))+y Z P (5' |'s,m; (s)) Vi(sh

s'es

(5) Ty (8) — argn&x R(s,a)+y Z P(s' | s,a) i(s')

s'es

ALGORITHM 2: Policy iteration algorithm.

This function gives the best possible expected sum of
discounted rewards that can be obtained using any policy 7.
The Bellman equation for the optimal value function is

V*(s)=121€aj(R(s,a)+yZP(s’|s,a)V*(s’) . (6)

s'eS

The optimal value function is such that we have

*

Vi(s)=V" (s) 2 V" (s). (7)

2.1. Dynamic Programming Algorithms for MDPs. When the
state transition probabilities are known, dynamic program-
ming can be used to solve (6). Next, we present three
efficient algorithms for solving finite-state MDPs by means
of dynamic programming. The first one is the iterative policy
evaluation (given in Algorithm 1). The second one is the
policy value iteration algorithm (given in Algorithm 2). This
algorithm repeatedly computes the value function for the
current policy and then updates the policy using the current
value function. The third one, shown in Algorithm 3, called
value function iteration, can be thought as an iterative update
of the estimated value function using Bellman Equation (6).

The last two algorithms are known to converge usually
faster than the first one. Moreover policy iteration and value
iteration are standard algorithms for solving MDPs, and there
is not currently universal agreement over which algorithm is
better 26, 27].

3. Web Service Composition Model

In this section we define the MDP model used to represent
and solve the Web service composition problem by means of
dynamic programming algorithms.

We begin by describing the WSC problem in more details.
Individual Web services can be categorized in classes by their
functionality, input data, and output data. Given C different
classes of individual Web services, the WSC problem consists
in finding a sequence of length C of individual Web services
(wy, w,,...,we), such thatw; € W, fori =1,2,...,C, where
W, is the set of all available Web services of class i. Thus, we are
making the assumption that a valid composite Web service
needs a Web service from each of the existing classes. We are
also making the assumptions that all available Web services
have been previously categorized into C classes and that the
ordering of the classes W, < W, < --- < W, has been
predefined. W, < W, means that a Web service from set W,
must be executed before a Web service from set W; to ensure
the correct operation of the selected Web services. The correct
operation depends basically on their functionality and input
and output data. Therefore, the output of w; must be fully
compatible with the input of w;.

Now, we are ready to introduce our model. We define a
Web service composition problem as an MDP (S, A, P, y, R),
where S is the set of states, A is the set of actions, P is the state
transition probability function, y is a discount factor such that
y € [0, 1), and R is the reward function. Elements S, A, P, and
R are defined next.

The Scientific World Journal

(1) foreach state do
2) V(s)—0

(3) end

(4) repeat

(5) foreach state do

(7) end
(8) until convergence

(6) Vi+1(s)<_m€aj(R(s,a)+yZP(s’|s,a)Vi(s’)

s'es

ALGORITHM 3: Value iteration algorithm.

3.1. States. S is the set of states. Given a WSC problem with
C classes, S consists of all compositions of length at most C.
Thus, for C = 1, S = {{w;)}, with w, € W,. A composition
of length I = 1 is not really a composition; it is just a single
Web service; however, we will relax the meaning of the word
composition and will call it a composition of length / = 1. For
C =28 = {{w), (w;, w,)}, with w; € W, and w, € W,.
For C =3, S = {{w)), (w;, w,), (w;, w,, ws)}, with w;, € W,
w, € W,, and w; € W;. In general, for a WSC problem with
C classes S = {{wy), (W, w,), ..., (W, Wy, ..., W)}

3.2. Actions. A is the set of all actions. Given a state s,
the set of actions available from s is denoted by A(s); thus
A = {A(s)}ses- An action consists of selecting a Web service
to be included in the current composition. If the current
composition is of length [= i, all the possibilities of selecting
a Web service of class ¢ = i+ 1 will constitute the set of current
available actions.

Formally, we say that A = {A(s), A(s21)> A(S125);
oo A(Sjc_1)}, where A(s_;) is read as the set of actions
available from a state representing a composition of length
I = i. Note that A(s,_,) refers to set of actions available from
a composition of length I = 0, which corresponds to the state
where none of the Web services has been selected yet.

For example, if the current state represents the composi-
tion (w,, w,) which is of length I = 2, then A(s;_,) is given by
all the possibilities of selecting a Web service of class ¢ = 3.
In other words, we are in a situation where we have already
selected Web services from class ¢ = 1 and class ¢ = 2, and
now we need to select a Web service from class ¢ = 3.

3.3. Transition Probabilities. P(s' | s,a) are the state transi-
tion probabilities for all states s,s' € S and actions a € A,
which are currently available from s and s'. Note that the
probability of going from a state s = (w,) to the state s’ =
(wy,w,) is 1. Meanwhile, the probability of going from the
same state s = (w;) to a state s = (wy, w,, wy) is 0. In other
words, we can only go from a composition state of length [= i
to another composition state of length =i + 1.

3.4. Reward Function. R(s' | s,a) is the reward received
when action a is executed and the environment makes a
transition from s to s’. The reward function for our model
is computed using three QoS attributes, as indicated in (8),

which was originally proposed in [22]. The QoS employed are
availability, throughput, and execution time:

av’ —av™" time® — time™" tr® —tr™"
R(s) = -

aymax _ avmin

{pmax _ f,-min >

(8)

time™a* — time™in

where av’, time®, tr° are the availability, average execution
time, and throughput values for the last Web service added
to the composition represented by state s. av™", time™",
tr™™ and av™™, time™>, and t#™ are the minimum and

maximum values for all the Web services.

4. Experimental Evaluation

In this section we provide the results of our experimental
comparison using two scenarios, one real and one artificial.
The experiments that we present in this section were per-
formed running policy iteration, iterative policy iteration,
and value iteration algorithms, on an Intel Core i5 2.5 GHz
processor, on Windows 8.1, 64 bits operating system, and
6 GBRAM.

4.1. Real Scenario. The WSC problem considered as our first
experimental scenario consists of 2 classes of Web services.
One class is about weather services that can be used to obtain
the current temperature in a city. The other class is about
Web services that can be used to convert temperatures from
one metric unit to another, for example, from Fahrenheit
to Celsius. In the class of weather services we considered 3
different Web services.

(i) National Oceanic and Atmospheric Administration
(NOAA) Web service, available at http://graphical
.weather.gov/xml/SOAP _server/ndfdXMLserver.php.

(ii) GlobalWeather Web service, available at http://www
.webservicex.net/globalweather.asmx.

(iii) Weather channel Web service, available at http://api
.wunderground.com/.

In the class of metric units conversion services we con-
sidered 4 different Web services.

The Scientific World Journal

(i) A simple calculator Web service such as the one avail-
able at http://www.dneonline.com/calculator.asmx.
Since

5% (F-32)
C——9 , 9)

we can use subtraction, multiplication, and division
operations for the temperature conversion.

(ii) ConvertTemperature Web service, available at http://
www.webservicex.net/ConvertTemperature.asmx.

(iii) TemperatureConversions Web service, available at
http://webservices.daehosting.com/services/Temper-
atureConversions.wso.

(iv) TempConvert Web service, available at http://www
.w3schools.com/webservices/tempconvert.asmx.

We obtained the QoS attribute values of all 7 Web services
using a java program designed to get the attribute values with
the following formulas:

Availability = % , (10)
T

where Cg is the number of successful calls to the Web service
and Cy are the total calls,

T
Execution time = —, (11)
Cr

where T is the total execution time for all the C; calls,

Throughput = %, (12)

with C; = 50.

In order to obtain representative QoS values for the
Web services, we made many measurements, several days
in different moments of the day. We obtained the values for
each parameter and measurement, and then we calculated the
average values for the QoS parameters.

Once we gathered the information of the QoS attributes
we used all 3 dynamic programming algorithms to learn the
best composite Web service. With 7 Web services belonging
to 2 different classes, there are 12 possible compositions. All
these possibilities are represented with the graph illustrated
in Figure 1.

The graph of the real scenario illustrates each class of Web
services as a layer. In this graph, each node represents an
individual Web service. Node S represents the state where
none of the Web services has been selected yet. Node G
represents the state where a full composition of Web service
hasbeen accomplished. A path from S to G implies that a valid
composite Web service has been generated.

Results with the real Web services scenario are plotted
in Figure 2. All 3 algorithms found the solution for the Web
service composition very quickly, in less than 0.07 seconds,
with policy iteration being the winner.

Weather Temperature
services conversion
services
WS,
WS,
WS,
WS,
WS,
WS,
WS,

FIGURE 1: Graph for the real scenario with 2 classes of Web services.
The first class contains 3 Web services and the second class contains
4 Web services. Each class is illustrated as a layer of nodes.

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Time (s)

0 I I I I I I I I
01 02 03 04 05 06 07 08 09 1

—=— Policy iteration
—— Iterative policy evaluation
—— Value iteration

FIGURE 2: Learning times for the real scenario.

4.2. Artificial Scenario. As our second scenario to test all
3 dynamic programming algorithms, we simulated data
for three QoS attributes: availability, execution time, and
throughput. We created a maximum of 100,000 individual
Web services, classified into 100 hypothetical classes of Web
services. We assumed that every Web service in a class i can
access all the Web services in class i + 1. Each of these classes
is represented as a layer in Figure 3. Each layer contains 100
nodes or individual Web services.

As in the first scenario, node S is the initial state of
the graph and represents a state where none of the Web
services has been selected yet. Node G is reached when a valid
composition has been accomplished. Nodes between S and G

6 The Scientific World Journal

Layer 1 Layer 2 Layer 1000
ws! ws? Ws1000
ws) Ws3 w000

1
WS100 WS%OO WSigo”

FIGURE 3: Graph for an artificially generated Web composition problem with a maximum of 1,000 selected nodes. Each node is selected out
0f 100 possible individual Web services belonging to the same class (layer).

200 T T T T T T T T 180 T T T T T T T T
180 b 160
160 8 140
ol |
< 100 . < 100
E E 80
= 80r T &=
60 | | 60
40 + i 40
20 ¢ g 20
0 S 0 .
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
Nodes Nodes
—=— Policy iteration —=— Policy iteration
—e— Iterative policy evaluation —e— Iterative policy evaluation
—— Value iteration —— Value iteration
FIGURE 4: Learning times with y = 0.7. FIGURE 6: Learning times with y = 0.9.

represent the available Web services. A route from S to G gives
a possible composite Web service.

122 Results of this second set of experiments are shown in
140 Figures 4, 5, and 6, for y = 0.7,y = 08,and y = 0.9,
120 respectively.
2 100 Each layer in the graph represents 100 Web services
g s belonging to the same class. Therefore, when the number of
&

nodes to be selected for a valid Web service composition is
1,000, we are really solving a problem with 100 x 1,000 =
100,000 Web services. We can see from the learning curves
.))))))) that the time needed to solve the MDP problem increases
100 200 300 400 500 600 700 800 900 1000 as the number of nodes is increased. Again, all 3 algorithms

Nodes found the optimal solution, but policy iteration found it
in less time. The best performances of the algorithms were
obtained for y = 0.8 and y = 0.9, requiring less than 180
seconds to find the optimal composition using iterative policy
evaluation and value iteration and less than 120 in the case of
FIGURE 5: Learning times with y = 0.8. policy iteration.

—=— Policy iteration
—e— Iterative policy evaluation
—— Value iteration

The Scientific World Journal 7

(1) initialize Q(s, a) arbitrarily

(2) foreach training episode do

(3) initialize s

(4) choose a from s using policy derived from Q

(5) repeat for each step of episode

(6) take action a, observe r, s’

(7) choose a’ from s’ using policy derived from Q
(8) Q(s,a) — Q(s,a) +a[r+yQ(s',a") - Q(s,a)]
9) se—siae—a

(10) until sis terminal

(11) end

ALGORITHM 4: Sarsa algorithm.

(3) initialize s

®) s s';
9) until s is terminal
(10) end

(1) initialize Q(s, a) arbitrarily
(2) foreach training episode do

(4) repeat for each step of episode
(5) choose a from s using policy derived from Q
(6) take action a, observe r, s

(7) Q(s,a) «— Q(s,a) +« | r + y maxQ (s',a")-Q(s,a)

!

ALGORITHM 5: Q-learning algorithm.

5. Comparison with Sarsa and Q-Learning

In some related works [22-24], reinforcement learning algo-
rithms were proposed to solve the Web service composition
problem. In this section we compare the learning times
required by sarsa and Q-learning against policy iteration,
iterative policy evaluation, and value iteration.

5.1. Sarsa. Sarsa [25] is an on-policy temporal difference
control algorithm which continually estimates the state-
action value function Q" for the behavior policy 7 and at the
same time changes 7 toward greediness with respect to Q".
Algorithm 4 presents the sarsa algorithm as taken from [25].

If the policy is such that each action is executed infinitely
often in every state, every state is visited infinitely often, and
it is greedy with respect to the current action-value function
in the limit, then by decaying «, the algorithm converges to

Q" [28].

5.2. Q-Learning. Q-learning [29] is an off-policy temporal
difference control algorithm which directly approximates the
optimal action-value function, independently of the policy
being followed. It is one of the most popular algorithms
in reinforcement learning. Algorithm 5 reproduces the Q-
learning algorithm as taken from [25].

If in the limit the action-values of all state-action pairs are
updated infinitely often, with a decaying «, then the algorithm
converges to Q" with probability 1 [26, 30].

5.3. Learning Time Analysis. We have implemented sarsa
and Q-learning algorithms to solve the real scenario problem
defined previously in the experimental section. A comparison
graph illustrating the time required by sarsa, Q-learning, pol-
icy iteration, iterative policy evaluation, and value iteration
is given using a logarithmic scale in Figure 7. From this
graph we can clearly see that sarsa and Q-learning required
two orders of magnitude and more time to find the optimal
composition.

Additionally, we ran experiments with a second arti-
ficially created scenario, with 3 layers of 20 Web services
each. Once more, reinforcement learning methods required
much more time than the dynamic programming algorithms.
Logarithmic time curves given in Figure 8 show that sarsa and
Q-learning required one order of magnitude and more time
than dynamic programming algorithms. Furthermore, in
some of the experiments, reinforcement learning algorithms
failed to find the optimal solution, getting stuck in suboptimal
compositions.

Dynamic programming methods converge faster than
reinforcement learning methods simply because dynamic
programming methods update every single state value at each
iteration. Reinforcement learning methods only update the
value of the states that happen to visit, giving its exploration
policy, that is, epsilon greedy.

Furthermore, in terms of the deployment of an automatic
Web service composition system, it is worth mentioning
that the gathering of QoS information can be performed

8
10° 3
- e
e
g —1
w 10 F
5
—
(T D S a— e S G
“\/\/\n
01 02 03 04 05 06 07 08 09 1
Y
—— Sarsa —— Iterative policy evaluation
—— Q-learning —— Value iteration

—=— Policy iteration

FIGURE 7: Learning times required for a real scenario of Web service
composition, plotted in logarithmic scale. Reinforcement learning
methods required two orders of magnitude and more time than
dynamic programming methods.

10!
— —
@ 100}
i)
£
®
S 107} E
W —— gz 5
1072

—— Sarsa —— Iterative policy evaluation

—— Q-learning —— Value iteration

—=— Policy iteration

FIGURE 8: Learning times required for a simulated scenario with 3
layers of 20 Web services. Curves plotted in logarithmic scale show
that reinforcement learning methods required ten times more time
than dynamic programming algorithms to handle the same kind of
problem.

at specific time intervals by a dedicated module of such
system. Once we have gathered this information, which is
fundamental for the evaluation of the reward function, there
is no need to explore the state space of Web services as
reinforcement learning methods do. We can simply run a
dynamic programming algorithm to estimate the value func-
tion of the Web services and then compute the optimal com-
position of Web services.

6. Conclusion

In this paper we have proposed an MDP model to address the
Web service composition problem. We used three dynamic
programming algorithms, namely, iterative policy evaluation,
value iteration, and policy iteration, to show the reliability

The Scientific World Journal

of our approach. Experiments were conducted with both
artificially created data and a set of real data involving seven
publicly available Web services.

Our experimental results show that policy iteration is
the best one in terms of the minimum number of iterations
needed to estimate an optimal policy. The optimal policy
indicates the sequence of combined individual Web services
making up a composite Web service with the highest evalua-
tion of their QoS attributes.

Although some approaches using reinforcement learn-
ing have also been proposed, we argue that dynamic pro-
gramming methods are better suited for the Web service
composition problem than reinforcement learning methods.
The reason is that reinforcement learning methods such as
sarsa and Q-learning require a lot of exploration of the state
space and consequently they need more iterations to make a
good estimation of the optimal policy. To illustrate this,
we compared sarsa and Q-learning against policy iteration,
iterative policy evaluation, and value iteration. The result of
this comparison is that sarsa and Q-learning required one or
two orders of magnitude and more time than the dynamic
programming methods to handle problems of the same
complexity. Moreover, in some of the artificially created
experiments, reinforcement learning algorithms got stuck in
suboptimal Web services compositions.

None of the related works proposing the use of MDP-
based methods to solve the Web service composition problem
have provided a comparison study involving the five algo-
rithms that we have analyzed in this work: iterative policy
evaluation, value iteration, policy iteration, sarsa, and Q-
learning. Moreover, we present experimental results using
both a real scenario and a Web service composition scenario
with artificially generated data. All other related works report
experiments performed only with artificially created data.

Future research on this topic must address real Web ser-
vices composition involving more nodes. Another interesting
subject that deserves to be further investigated is the design of
complex reward functions capable of handling an increasing
number of QoS factors.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors would also like to thank the Secretaria de
Educacion of Mexico for the partial support through Grant
PIFI-2013-31MSU0098]-14.

References

[1] W3C Working Group, Web Services Architecture, 2004,
http://www.w3.org/TR/ws-arch/.

[2] V. X. Tran and H. Tsuji, “QoS based ranking for web Services:
fuzzy approaches,” in Proceedings of the 4th International Con-
ference on Next Generation Web Services Practices (NWeSP "08),
pp- 77-82, Seoul, Republic of Korea, October 2008.

The Scientific World Journal

(3]

5

(10]

16]

(17]

S.-Y. Hwang, E.-P. Lim, C.-H. Lee, and C.-H. Chen, “Dynamic
Web service selection for reliable Web service composition,”
IEEE Transactions on Services Computing, vol. 1, no. 2, pp. 104-
116, 2008.

D.-H. Shin, K.-H. Lee, and T. Suda, “Automated generation of
composite web services based on functional semantics,” Journal
of Web Semantics, vol. 7, no. 4, pp. 332-343, 2009.

Y. Yan, P. Poizat, and L. Zhao, “Self-adaptive service composi-
tion through graphplan repair;” in Proceedings of the IEEE 8th
International Conference on Web Services (ICWS ’10), pp. 624-
627, July 2010.

W. Jiang, S. Hu, D. Lee, S. Gong, and Z. Liu, “Continuous query
for QoS-aware automatic service composition,” in Proceedings of
the IEEE 19th International Conference on Web Services (ICWS
’12), pp. 50-57, Honolulu, Hawaii, USA, June 2012.

Y. Feng, A. Veeramani, and R. Kanagasabai, “Automatic DAG-
based service composition: a model checking approach,” in
Proceedings of the IEEE 19th International Conference on Web
Services (ICWS ’12), June 2012.

Y. Yan, M. Chen, and Y. Yang, “Anytime QoS optimization over
the PlanGraph for web service composition,” in Proceedings of
the 27th Annual ACM Symposium on Applied Computing (SAC
12), pp- 1968-1975, March 2012.

L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, “QoS-aware middleware for Web services
composition,” IEEE Transactions on Software Engineering, vol.
30, no. 5, pp. 311-327, 2004.

D. Ardagna and B. Pernici, “Adaptive service composition in
flexible processes,” IEEE Transactions on Software Engineering,
vol. 33, no. 6, pp. 369-384, 2007.

T. Yu, Y. Zhang, and K.-J. Lin, “Efficient algorithms for Web
services selection with end-to-end QoS constraints,” ACM
Transactions on the Web, vol. 1, no. 1, article 6, 2007.

S.-C. Oh, D. Lee, and S. R. T. Kumara, “Effective Web service
composition in diverse and large-scale service networks,” IEEE
Transactions on Services Computing, vol. 1, no. 1, pp. 15-32, 2008.
Y. Bo and Q. Zheng, “Semantic web service composition
using graphplan,” in Proceedings of the 4th IEEE Conference on
Industrial Electronics and Applications (ICIEA °09), pp. 459-463,
Xi’an, China, May 2009.

P. Rodriguez-Mier, M. Mucientes, and M. Lama, “Automatic
web service composition with a heuristic-based search algo-
rithm,” in Proceedings of the IEEE 9th International Conference
on Web Services (ICWS ’11), pp. 81-88, July 2011.

E Qiqing, P. Xiaoming, L. Qinghua, and H. Yahui, “A global
QoS optimizing web services selection algorithm based on
MOACO for dynamic web service composition,” in Proceedings
of the International Forum on Information Technology and
Applications (IFITA °09), pp. 37-42, Chengdu, China, May 2009.
M. Oh, J. Baik, S. Kang, and H.-J. Choi, “An efficient approach
for QoS-aware service selection based on a tree-based algo-
rithm,” in Proceedings of the 17th IEEE/ACIS International
Conference on Computer and Information Science (ICIS °08), pp.
605-610, IEEE, Portland, Ore, USA, May 2008.

P. Doshi, R. Goodwin, R. Akkiraju, and K. Verma, “Dynamic
workflow composition using Markov decision processes,” in
Proceedings of the IEEE International Conference on Web Ser-
vices (ICWS "04), pp. 576-582, July 2004.

A. Gao, D. Yang, S. Tang, and M. Zhang, “Web service compo-
sition using Markov decision processes,” in Advances in Web-
Age Information Management: Proceedings 6th International

(19

[20]

(21]

[22]

Conference, WAIM 2005, Hangzhou, China, October 11-13, 2005,
vol. 3739 of Lecture Notes in Computer Science, pp. 308-319,
Springer, Berlin, Germany, 2005.

J. Harney and P. Doshi, “Selective querying for adapting web
service compositions using the value of changed information,”
IEEE Transactions on Services Computing, vol. 1, no. 3, pp. 169-
185, 2008.

K. Chen, J. Xu, and S. Reiff-Marganiec, “Markov-HTN planning
approach to enhance flexibility of automatic web service com-
position,” in Proceedings of the IEEE International Conference on
Web Services (ICWS '09), pp. 9-16, Los Angeles, Calif, USA, July
20009.

H. Wang, P. Tang, and P. Hung, “RLPLA: A reinforcement
learning algorithm of web service composition with preference
consideration,” in Proceedings of the IEEE Congress on Services
Part 11, 2008.

H. Wang, X. Zhouy, X. Zhou, W. Liu, and W. Li, “Adaptive and
dynamic service composition using Q-learning,” in Proceedings
of the 22nd International Conference on Tools with Artificial
Intelligence (ICTAI ’10), pp. 145-152, Arras, France, October
2010.

V. Todica, M.-F. Vaida, and M. Cremene, “Formal verification
in web services composition,” in Proceedings of the 18th IEEE
International Conference on Automation, Quality and Testing,
Robotics (AQTR ’12), pp. 195-200, May 2012.

L. Yu, W. Zhili, L. Meng, W. Jiang, and X.-S. Qiu, “Adaptive web
services composition using Q-learning in cloud,” in Proceedings
of the 9th IEEE World Congress on Services (SERVICES ’13), pp.
393-396, Santa Clara, Calif, USA, July 2013.

R. S. Sutton and A. G. Barto, Reinforcement Learning An
Introduction, The MIT Press, Cambridge, Mass, USA, 1998.

D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming, Athena Scientific, 1996.

M. L. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming, Wiley Series in Probability and Math-
ematical Statistics: Applied Probability and Statistics, Wiley-
Interscience, 1994.

S. Singh, T. Jaakkola, M. L. Littman, and C. Szepesvari, “Conver-
gence results for single-step on-policy reinforcement-learning
algorithms,” Machine Learning, vol. 38, no. 3, pp. 287-308, 2000.
C. Watkins, Learning from delayed rewards [Ph.D. thesis],
University of Cambridge, 1989.

T. Jaakkola, M. I. Jordan, and S. Singh, “On the convergence of
stochastic iterative dynamic programming algorithms,” Neural
Computation, vol. 6, pp. 1185-1201, 1994.

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

