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We introduce a reinforcement learning architecture designed for problems with an infinite number of states, where each state can
be seen as a vector of real numbers and with a finite number of actions, where each action requires a vector of real numbers as
parameters. The main objective of this architecture is to distribute in two actors the work required to learn the final policy. One
actor decides what action must be performed; meanwhile, a second actor determines the right parameters for the selected action. We
tested our architecture and one algorithm based on it solving the robot dribbling problem, a challenging robot control problem taken
from the RoboCup competitions. Our experimental work with three different function approximators provides enough evidence

to prove that the proposed architecture can be used to implement fast, robust, and reliable reinforcement learning algorithms.

1. Introduction

Applying reinforcement learning (RL) to solve real-world
robotic problems is certainly not so common nowadays
mainly because most RL methods require several training
episodes to learn an optimal policy. This condition supposes
having a robot performing a task several thousand times, as it
learns through reinforcement learning. In addition to the
time required for the training process, we must also consider
the time we must spend calibrating sensors and actuators,
and the possible damage the robots may suffer. Therefore, one
common approach is to first try to solve difficult problems
with continuous states and actions in simulated environ-
ments, where even the noise of real sensors and actuators can
be simulated.

In this paper we propose a novel RL architecture for con-
tinuous state and actions spaces. Such an architecture was
tested with a difficult control problem in the official simulator
of the RoboCup [1]. The Robot World Cup or RoboCup for
short is an international tournament taking place every year
since 1997, each year in a different country. The RoboCup is
known up to date as a standard and challenging problem for
artificial intelligence and robotics. The most important goal

of RoboCup is to advance the overall technological level of
society, and as a more pragmatic goal to achieve the following.

By mid-twenty-first century, a team of fully autonomous
humanoid robot soccer players shall win the soccer game,
complying with the official rule of the FIFA, against the
winner of the most recent World Cup.

One of the competitions in this tournament is the sim-
ulation league. In this category two teams of eleven virtual
soccer players each play for ten minutes. The main advantage
of this league is that it allows us to focus more on higher
level concepts and less on the hardware problems related to
working with real robots. In general, the simulator provides a
challenging testbed due to its nondeterministic behavior with
real-time demands and semistructured conditions. The robot
dribbling problem, a challenging control problem taken from
this competition, is perfect for our purpose. It is difficult to
solve and it requires handling continuous states and actions.
Solutions to the dribbling problem using reinforcement
learning were first provided by Gollin [2].

As we have already mentioned, RoboCup has become
a popular testbed for new artificial intelligence methods in
general and for machine learning methods in particular. For
instance, Riedmiller and Gabel [3] have been working on



the application of reinforcement learning to solve problems
in the RoboCup, especially in the simulation league. Other
recent research works related to RL and robot soccer are
presented by Cherubini et al. [4] and Leng and Lim [5]. In the
former, the authors compare two learning algorithms based
on policy gradient to solve the humanoid walking gait prob
lem, which is not a trivial issue addressed in humanoid
robotic soccer. In the latter, a simulation testbed is introduced
and it is used to analyze the effectiveness of different RL algo-
rithms, specially in a competitive and cooperative learning
framework, involving several goal-oriented agents. Some
other researchers have proposed simplified versions of the
RoboCup simulator. This is the case of Stone and his research
group, who proposed the keepaway domain [6].

Reinforcement learning methods for problems with con-
tinuous state and action spaces have become more and more
important, as an increasing number of researchers try to solve
real-world problems. In a recently published work, Montazeri
et al. [7] present a novel algorithm based on growing self-
organizing maps, which is shown to be effective in solving the
continuous state-action problem in RL. However, among the
most promising RL methods for continuous state and action
spaces are the ones based on the actor-critic architecture
[8]. Crites and Barto [9] introduced an actor-critic algorithm
that is equivalent to Q-learning constrained by a particular
exploration strategy. In this method, Q-values are encoded
within the policy and value function of the actor and critic.
In general, it updates the critic only when the most probable
action is performed from any given state, and it rewards
the actor taking into account the relative probability of the
action that was executed. The authors provided a convergence
proof for the case where the state and action sets are finite.
Algorithms based on the standard actor-critic architecture
are structured in 2 main modules. One module known as the
actor which implements a policy that maps states to actions,
and a second module known as the critic which attempts to
estimate the value of each state in order to provide useful
feedback to the actor. In such methods the actor adapts to
the critic and the critic adapts to the actor. Learning in both
modules is obtained through the computation of the temporal
difference error.

In the next section, we provide a basic background on
reinforcement learning and the standard actor-critic archi-
tecture. Then, in Section 3 we introduce our proposed A*C
architecture and one RL algorithm based on it. Section 4 gives
details about our experimental work, as well as some discus-
sions about the main results we obtained. Finally, Section 5
presents our conclusions and gives suggestions for possible
extensions of our research work.

2. Background

In reinforcement learning [8, 10, 11], the central idea is that
of an agent learning to accomplish a goal through its inter-
action with an environment. Such a problem is commonly
approached using the Markov decision process (MDP)
framework [12-15]. The agent interacts with the environment
several times and gather, information about the rewards
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obtained and the states visited, after performing different
actions in different states.

Formally, a Markov decision process (MDP) is a tuple
(S, A, P,y,R), where

(i) S is a set of states,
(ii) A is a set of actions,

(iil) P(s;4 | 54> a,) are the state transition probabilities for
all states s, s,,; € Sand actionsa € A,

(iv) y € [0, 1) is a discount factor,
(v) R:Sx A — R isthe reward function.

The MDP dynamics is follows. An agent in state s, € S
performs an action a, selected from the set of actions A.
As a result of performing action a,, the agent receives a
reward with expected value R(s,, a,), and the current state of
the MDP transitions to some successor state s, ;, according
to the transition probability P(s,,; | s;,a,). Once in state
s.,1 the agent chooses and executes an action a,,,, receiving
reward R(s,,,, a,,,) and moving to state s,,,, The agent keeps
choosing and executing actions, creating a path of visited
states s;, S, 1> Sp42- - - - and obtaining the following rewards:

R(sg>a9) + YR (s, a,) + Y*R(sy,a,) + -+ )

The reward at timestep ¢ is discounted by a factor of y*. By
doing so, the agent gives more importance to those rewards
obtained sooner. In an MDP, we try to maximize the sum of
expected rewards obtained by the agent

E[R(SO)%)*'VR(SD%)+Y2R(52>‘12)+"‘]- )

A policy is defined as any function 7 : S — A mapping
states to the actions. A value function V(s) for a policy 7 is
defined as the expected sum of discounted rewards, obtained
by performing always the actions provided by 7 as

V*(s) = E [R (50,7 (s0)) + YR (51,7 (s1))
©)

+ Y’ R(s,,m(s,)) +--- | s, =S,7[].

V"™ is the expected sum of discounted rewards that the
agent would receive if it starts in state s and takes actions given
by 7. Given a fixed policy 7, its value function V" satisfies the
following Bellman equation:

V”(s):R(s,n(s))+yZP(s' Is,rr(s))V”(sl). (4)
s'eS
The optimal value function is defined as

V*(s) = mﬂaxV" (s). (5)

This function gives the best possible expected sum of dis-
counted rewards that can be obtained using any policy 7.
Using (4) and (5), we can obtain the Bellman equation for the
optimal value function as

V*(s):rzlea;xx R(s,a)+yZP(s'|s,a)V*(s') . (6)

s'eS
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The Bellman equation is fundamental in the design of RL
algorithms. In general, using the data collected by the agent,
RL algorithms compute estimates of the state or action value
function.

Value functions could be stored using lookup tables.
However, interesting problems have a large number of states
and actions, sometimes, an infinite number of them. For such
cases, we need to replace the lookup table with a function
approximator. Using a function approximator naturally com-
plicates the learning process, since we need to deal with more
parameters. However, it is the most effective way that we
have so far to deal with the curse of dimensionality. Another
promising way to deal with complex state and action spaces is
based on the exploitation of temporal abstractions, through
the use of hierarchical reinforcement learning methods, as
explained by Barto and Mahadevan [16].

One of the main developments in reinforcement learning
was the introduction of the temporal difference (TD) meth-
ods, which are a class of incremental learning procedures
specialized for prediction problems [17]. They are driven by
the error or difference between temporally successive predic-
tions of the states. Learning occurs whenever there is a change
in the prediction over time.

The simplest TD method known as TD(0) updates the
estimate of the value function, after going from state s to state
s’ and receiving the reward r, using the following rule:

Vi ) — Vi () +a[r+ V() -Vi9)]. ()

Based on this rule, several popular RL methods such as
SARSA [8] and the actor-critic [8] methods were developed.
SARSA is an on-policy temporal difference control algorithm
which continually estimates the state-action value function
Q" for the behavior policy 7, and at the same time changes 7
toward greediness with respect to Q”. If the policy is such that
each action is executed infinitely often in every state, every
state is visited infinitely often, and it is greedy with respect
to the current action-value function in the limit, and then by
decaying «, the algorithm converges to Q" [18].

Actor-critic methods are TD methods that have a separate
memory structure to explicitly represent the policy indepen-
dent of the value function. The policy structure is known
as the actor, because it is used to select actions, and the
estimated value function is known as the critic, because it
criticizes the actions made by the actor. Learning is always
on-policy: the critic must learn about and critique whatever
policy is currently being followed by the actor. The critique
takes the form of a TD error. This scalar is the only output of
the critic and guides the learning occurring in both actor and
critic as illustrated in Figure 1.

Typically, the critic is a state-value function. After each
action selection, the critic evaluates the new state to deter-
mine whether things have gone better or worse than expected.
That evaluation is the TD error as

8 =111 ¥V (511) =V (s1) (8)

where V is the current value function implemented by the
critic. This TD error can be used to evaluate the action just
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FIGURE 1: The actor-critic architecture.

selected, the action g, taken in state s,. If the TD error is
positive, it suggests that the tendency to select a, should be
strengthened for the future, whereas if the TD error is nega-
tive it suggests that the tendency should be weakened. Under
batch updating, TD converges deterministically to a single
answer independent of the step-size parameter «, when « is
sufficiently small [8].

Actor-critic methods have two significant apparent
advantages.

(i) They require minimal computation in order to select
actions. Consider a case where there are an infinite
number of possible actions, for example, a contin-
uous-valued action. Any method learning just action
values must search through this infinite set in order
to pick an action. If the policy is explicitly stored,
then this extensive computation may not be needed
for each action selection.

(ii) They can learn an explicitly stochastic policy; that is,
they can learn the optimal probabilities of selecting
various actions.

3. Architecture and Algorithm

The A’C architecture, illustrated in Figure 2, is the result of
our search for a robust reinforcement learning architecture
specifically designed to tackle intelligent control problems
with continuous state and action spaces, where the compu-
tation of the final policy must be performed very fast.

The key part of this architecture design is the idea of
distributed policy learning, which allows the agent to learn
and store the information of the final policy using only two
modules, instead of only one. Sometimes trying to use one
structure to store the policy of a complex reinforcement
learning problem is simply not enough. We need to distribute
the amount of information required to store the policy in
more than one module. Therefore, the proposed architecture
increases the number of modules used to store the final policy



S

Action type
actor

a

Assembler

Environment

FIGURE 2: The A%C architecture.

from one to two: the action type actor and the parameter
actor. During the learning phase, a third module known as the
assembler is used to assemble one action type and one vector
of parameters into one executable action. The functions of
each of the three modules are as follows.

(i) Action type actor learns from the scalar reward r
which action type g, is the best one to be executed by
the agent in the next time stage.

(ii) Parameter actor learns from the temporal difference
error TD which parameter vector p is the best for the
action type a, provided by the action type actor.

(iii) Assembler takes the action type a, and the parameter
vector p and assembles the action a to be executed by
the agent.

The action type actor implements SARSA learning [8].
This module focuses on learning the best action type at each
moment. Given that the number of actions is finite and small,
the learning process in this module is fast and robust, even
when the states are expressed as continuous vectors.

The parameter actor learns from the temporal difference
error computed after each execution of an action. At each
time, the parameter action suggests what it believes is the
best parameter for the action type chosen by the action type
actor. Then, it observes the TD error generated after applying
the action formed by the action type and the parameters. If
the TD error is greater than zero, it means that the action type
and the parameters vector selected are good, and its selection
in the future must be reinforced. In this algorithm reinforcing
the use of a specific parameters vector means that we should
train the function approximators with the supervised training
example (s, p), where s is the current state and p is the vector
of parameters.

If the TD error is zero or less than zero, it means that
one out of three possibilities is happening: (1) the action type
selected is incorrect and the parameter vector is correct; (2)
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the action type selected is correct and the parameter vector is
incorrect; (3) both the action type and the parameter vector
are incorrect. Only in the first case we should reinforce the
selection of such parameters vector; however, it is impossible
to determine in which of these three cases we have fallen.
Therefore, we simply jump to the next state without experi-
menting any learning within the parameter actor.

Note that the parameter actor is responsible only for the
selection of the parameters; however, it is evaluated taking
into account both the action type and the parameters. Under
this condition, it is only possible to guarantee the correct
learning of the parameters if we can guarantee that the action
type actor will eventually learn the correct action types; other-
wise, the parameter actor will fail to learn the right parame-
ters.

As in the standard actor-critic architecture, we also
employed the typical critic module, which learns from the
temporal difference error TD the value function V(s) used to
evaluate the quality of each state s. This evaluation is used by
the critic itself to improve its estimation of V(s) and it is also
used by the parameter actor to improve its estimation of the
best parameters for the action types.

To implement our architecture, a number of function
approximators are required. The number of function approx-
imators is determined by the number of action types and
the number of parameters required by each action type.
Figure 3 illustrates the function approximators used in our
experimental work. We employed 4 function approximators
for the action type actor, 7 for the parameter actor, and 1 for
the critic.

The algorithm we propose to implement our architecture
is the SARSA A’C.

(1) Initialize the action type actor, the parameter actor,
and the critic. This step refers to randomly choosing
the initial values of all the parameters used by all the
function approximators.

(2) From current state s, select the best action type a, and
parameter vector p, . To select the best action type, we
simply evaluate all the function approximators used
by the action type actor, with the current state s, and
we pick the action type whose function approximator
gives the greatest evaluation. Once we have selected
the best action type for the current state s, we evaluate
the function approximators assigned to that action
type, to get p, .

(3) Assembly action a with action type g, and parameter
vector ﬁat. This step is a plain call to the code function
used internally by our agent to get ready to execute the
chosen action.

(4) For each training episode, use learning rate o and dis-
count factor y to do the following.

(a) Execute action a and observe next state s’ and
the scalar reward r.

(b) Compute the TD errorase = [r + yV(s')] ~-V(s),
where V(s) is the state value function stored by
the critic.
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FIGURE 3: 12 function approximators used to implement the action type actor, the parameter actor, and the critic.

(c) Update the critic using the TD error with
V(s) « V(s) + ae.

(d) If (¢ > 0) then reinforce the use of p, by
retraining the function approximator of action
type a, with the example (s, p, ).

(e) From the next state s', compute the next action
type a, and parameter vector Pa-

(f) Assemble the next action a’ with action type at'
and parameter vector f’ﬂl'

(g) Update the action type actor with Q(s,a,) «
Q(s,a,) + afr + yQ(s',at') - Q(s,a,)], where
Q(s, a,) is the state-action value function imple-
mented as a function approximator.

(h) Update the current state with s « s’ and the
current action with a «— a’.

4. Experimental Results

In the RoboCup simulation league, one of the most difficult
skills that the robots can perform is dribbling. Dribbling can
be defined as the skill that allows a player to run on the field
while keeping the ball always within its kickable margin, as
illustrated in Figure 4. In order to accomplish this skill, the
player must alternate dash and kick actions.

There are three factors that make this skill a difficult one
to accomplish.

AR Kickable
L N / margin
/ Standard .
\
\

, player

FIGURE 4: The dribbling problem.

(1) The simulator adds noise to the movement of objects
and to the parameters of commands.

(2) Since the ball must remain close to the robot without
collisioning with it, and at the same time it must be
kept in the kick range, the margin for error is small.

(3) The most challenging factor is the use of heteroge-
neous players during competitions. Using heteroge-
neous players means that for each game the simulator
generates seven different player types at startup, and
the eleven players of each team are selected from
this set of seven types. Given that each player type
has different “physical” capacities, an optimal policy
learned with one type of player is simply suboptimal



when followed by another player of different type. In
theory, the number of player types is infinite.

Due to these three reasons, a good performance in the
dribbling skill is very difficult to obtain. Up to date, even
the best teams perform only a reduced number of dribbling
sequences during a game. Most of the time the ball is simply
passed from one player to another.

4.1. Desired Characteristics of the Solution. The final policy we
are looking for must fulfill the following conditions if it is to
be used during competitions.

(i) The final policy, seen as a function of the current state,
must be easy to evaluate. During competitions, many
decisions must be taken by the team, such as com-
puting positions, velocities, and accelerations, and
deciding what kicks and dashes must be performed
to keep the possession of the ball or to recover it. All
these computations must be done as fast as possible
so the state does not change much before the actions
are executed; otherwise, the results are suboptimal or
completely useless in the best case. In the worst case,
the adversary team might score many goals against
us. Dribbling is only a minor part of these bunch of
computations and we must assure that its execution is
as fast as possible.

(ii) It must have a high performance with heterogeneous
players. Solving the dribbling problem with standard
players could be achieved easily. However, getting
a competitive performance with the heterogeneous
players is a different story.

(iii) The generation of such policy must be done with few
manual adjustments. The RoboCup Simulator is being
continuously improved, if the learning algorithm
depends strongly on some parameters of the players
or the server, and those parameters are removed in the
future due to major changes in the simulator software,
then major changes will be required in the learning
algorithm to keep it useful, especially if we require
several manual adjustments.

(iv) Performance at least around 20 meters with high
reliability is required. This is a self-imposed condition
by our team based on the experience accumulated
during several years of experimentation and compe-
titions. We have seen that after 20 meters the policies
that push the players to run faster can be successful
with fast players, but terrible with the slow ones who
tend to lose the ball very often.

4.2. Experiments. 'The state is seen by the player as a param-
eter vector which consists of the following 10 variables: (1)
player decay, (2) dash power rate, (3) kickable margin, (4) kick
rand, (5) ball position x—player position x, (6) ball position
y—player position y, (7) ball velocity x—player velocity x,
(8) ball velocity y—player velocity y, (9) player velocity x,
and (10) player velocity y. The first 4 variables are some of the
parameters that define a type of player, and for this problem,
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they were the most useful during our experimentation. The
other 6 variables are needed to specify the current physical
state of the ball and the player.

In terms of the reward function, the following is applied.
If the ball is in the way of the player, the player receives only a
punishment of —10. If the first case is not true, we check if the
ball is in the border of the kickable margin which means that
the player is about to lose the ball, and in that case the player
receives only a punishment of —10. If the first and second
cases are not true and we check the third case. If the ball is
very close, to the player, there is the possibility of collisioning,
and in that case the player receives only a punishment of —10.
If none of these three cases is true, then the player receives a
positive reward r = player position x + ball position x +
[50 * (player velocity x + ball velocity x)], where 50 is a
weight parameter chosen experimentally.

The results presented next were obtained under the
following experimental settings.

(i) Both the player and the ball are initially in movement.

(ii) The player is placed at the center of the field with a
random velocity vector v, and the ball is placed in any
position that falls within the kick range of the player
with a random velocity vector v;,.

(iii) The player has 4 actions: Dash Max, Kick Velocity,
Kick Position, and Kick Align.

(iv) At each training episode we let the player try 35
actions at most.

(v) Ifthe ball goes out of the kickable margin of the player,
the current training episode is finished.

(vi) During training and testing, a new set of players is
generated every 7 episodes. In this way we basically
train with a different player each episode. By doing
so, we pretend to improve the generalization of our
learned model.

We used 3 different function approximators to implement
the actors and the critic.

(i) Multilayer perceptrons.

(ii) Multilayer perceptrons with one layer of radial basis
functions [19].

(iil) Arrays of radial basis functions.

In Figure 5, we see the performance of the SARSA A*C
algorithm using only multilayer perceptrons with 3 different
numbers of hidden units: 2, 10, and 20. After 50,000 training
episodes, all three configurations of the networks managed to
learn a policy that allows a performance of 15 meters at least,
being the configuration with 2 hidden units slightly better
with a performance of 16 meters. From the graph, we can
also see that as we increase the number of hidden units, the
learning curve becomes less smooth. Based on these results,
the configuration of the multilayer perceptron with 2 hidden
units was the most reliable.

We modified the multilayer perceptrons networks adding
a layer of radial basis functions between the input and the
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FIGURE 5: Learning curves of the SARSA A’C algorithm using
different numbers of multilayer perceptrons.

hidden layer that works as a filter layer. Each input unit was
connected to 10 gaussian radial basis functions. The idea was
to try to localize the learning. The resulting learning curves
are shown in Figure 6. We can see that in the case of using 10
and 20 hidden units, the performance obtained is not more
than 12 meters, being worse than that obtained using only
the multilayer perceptrons without radial basis functions. It
is also clear that the learning curves become less smooth.
However, we can notice that the configuration of 2 hidden
units keeps its performance of 16 meters and it is able to
reach this performance in less training time than the simple
multilayer perceptron network. The network with radial basis
function using 2 hidden units gets its best performance in
15,000 training episodes; meanwhile, the network without
radial basis functions needs at least 40,000 episodes.

For the third implementation of the SARSA A*C algo-
rithm, we used n arrays of gaussian radial basis functions, one
array per input. In Figure 7, we can see the learning curves
obtained with 10, 30, and 50 radial basis functions. The final
performance of 25 meters is much better than that obtained
with the previous function approximators. This performance
is obtained in less than 10,000 training episodes, which is
very fast compared to the results shown in the two previous
graphs. Also, we can notice that as we increase the number of
radial basis functions, the learning curves need a little more
time to go up. All three learning curves are smooth and with
small variance, which means that we are finding very reliable
policies.

Figure 8 shows the best learning curves found together
with each function approximator. It is clear that the best
performance in terms of training time and reliability is
obtained using only radial basis functions.

4.3. Final Policy Performance. Table 1 shows a comparison of
the two best reinforcement learning methods found so far to
solve the dribbling problem.

Meters

0 10 20 30 40 50
Training episodes (k)

2MLPs
--- 10MLPs
—— 20MLPs

FIGURE 6: Learning curves of the SARSA A’C algorithm using
different numbers of multilayer perceptrons and 10 radial basis
functions for each multilayer perceptron.
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FIGURE 7: Learning curves of the SARSA A’C algorithm using
different numbers of radial basis functions.

TaBLE 1: Comparison of the best policies for the dribbling problem.

SARSA A’C Q(A)-learning
Algorithm type Actor-Critic Q(A)-learning
Function approx. RBFs CMACs
States Continuous Continuous
Actions Continuous Discrete
Total learning time 10 minutes 24 hours 30 minutes
Average distance 25.45 meters 29.21 meters
Maximum distance 36.23 meters 39.0 meters

From Table 1, we can see the following. Both methods
employed linear function approximators. The states are
handled continuously by both methods. The SARSA A*C
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FIGURE 8: Learning curves of the SARSA A”C algorithm using three
different function approximators: radial basis functions, multilayer
perceptrons, and multilayer perceptrons with a layer of radial basis
functions.

method handles the actions continuously; meanwhile, in
Q(A)-learning, a finite set of actions with continuous param-
eters is employed. However, it is important to consider that
in Q(A)-learning, a finite set of actions is generated randomly
at the beginning of the training process. Then, an algorithm
is used during 24 hours to discover and delete the less useful
actions. After this reduction process, the final set of actions
contains about 30 action with continuous parameters. At this
point, the policy learning process is started with the reduced
set of actions. The policy learning process takes around 30
minutes.

In terms of average distance and maximum distance,
Q(A)-learning is superior to SARSA A2C. However, we must
realize that a more important factor to consider in the final
policy performance is the reliability. By reliability we mean
how much we can trust our policy during a game. In other
words, we are interested in knowing how often the player will
manage to run at least a given number of meters before it
loses the ball due to a wrong action selection. Therefore, in
order to study the reliability of the policies found with the
SARSA A’C algorithm in comparison with Q(A)-learning,
we performed the following experiment. Using one of the
best policies obtained, we let 10,000 different players run with
the ball from the center of the soccer field. We wrote down
how many meters each player managed to run before losing
the ball. Then, using this statistics we plotted the graphs in
Figures 9 and 10.

From Figure 9, we can see that with Q(A)-learning policy
most of the players managed to run at least 20 meters;
meanwhile, with the SARSA A”C policy they run at least 18
meters. Now, if we make a closeup of this graph and focus on
the first 20 meters as an accumulated frequency histogram,
the image we see is the one in Figure10. In this figure,
something interesting is evident. With Q(A)-learning policy,
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FIGURE 9: Comparison of the reliability of the policies found with
the SARSA Actor-Actor-Critic algorithm and the Q(A)-learning
algorithm.
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FIGURE 10: Accumulated frequency: Comparison of the reliability
of the policies found with the SARSA Actor-Actor-Critic algorithm
and the Q(A)-learning algorithm.

the players lose the ball more often than with the SARSA A*C
policy. Notice that a perfect policy will not allow the player
to lose the ball before running at least 20 meters. And if we
were working with a perfect policy, all the frequency columns
from meter 0 to 19 would be of size 0, meaning that the players
always run at least 20 meters. We can see that from meter 0 to
8, Q(A)-learning policy is more reliable, and between meters
9 and 18, the SARSA A>C policy is more reliable.

In competitions, the time required to compute each of
the decisions taken by the players must be reduced as much
as possible. Once the final policy has been learned, during
competition we need to compute the following.

(1) We need to compute he type of action to be exe-
cuted and the parameters of such action. To select
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the action, we need to compute the Q values cor-
responding to each type of action. The cost of this
computation is 4(¢; + ¢, + --+ + ¢,), where n is the
number of radial basis functions and ¢; is the cost of
computing the output of the gaussian function r; and
multiplying this output by the corresponding weight
w;. We multiply the cost by 4, since we have to perform
these operations for each type of action.

(2) Then, we must find the maximum of such 4 Q values.
We need to perform 3 comparisons to find the greatest
Q value. Therefore, the cost is 3¢, where c is the cost
of each logic comparison.

(3) Finally, we need to compute the parameters of the
chosen type of action. In the worst case we would need
to compute the values of two parameters. The cost of
this computation is 2(¢; + ¢, + -+ - +¢,), where n is the
number of radial basis functions and ¢; is the cost of
computing the output of the gaussian function r; and
multiplying this output by the corresponding weight
w;. We multiply the cost by 2, since we have to perform
these operations for each parameter of the selected
action.

5. Conclusions and Future Work

We have introduced the Actor-Actor-Critic architecture and
explained its benefits in problems with continuous state and
action spaces. Based on such architecture, we presented the
SARSA Actor-Actor-Critic algorithm or SARSA A’C for
short. Such an algorithm generate reliable policies for the
dribbling problem in short training times. We have also
presented and described the experimental results obtained
when applying the SARSA A”C algorithm to the most difficult
test scenario considered in this research. Finally, we have
made a comparison of our method and the current best
method to solve the dribbling problem.

We have shown through experimentation that an algo-
rithm with two actors and one critic, where the action type
actor is trained using Q values through SARSA learning
and the parameter actor and the critic are trained using the
standard temporal difference error, is capable of learning
policies with good performance and the learning process is
fast and completely reliable.

We have also seen that the array of radial basis functions
works better than the multilayer perceptron and the multi-
layer perceptron with one layer of radial basis functions.

The results obtained for a specially challenging task in the
RoboCup framework suggest that the implementation of our
A’C architecture may also lead to outstanding performance
in other RL problems with continuous state and action spaces.

Among our future work involving the A*C architecture,
we consider the solution of other problems with continuous
state and action spaces, the development of other algorithms
based on it, and the study of ways of implementing hierarchi-
cal A>C methods.
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