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We study constant angle semi-Riemannian hypersurfaces M immersed in semi-
Riemannian space forms, where the constant angle is defined in terms of a closed and 
conformal vector field Z in the ambient space form. We show that such hypersurfaces 
belong to the class of hypersurfaces with a canonical principal direction. This 
property is a type of rigidity. We further specialize to the case of constant mean 
curvature (CMC) hypersurfaces and characterize them in two relevant cases: when 
the hypersurface is orthogonal to Z then it is totally umbilical, whereas if Z is 
tangent to the hypersurface then it has zero Gauss–Kronecker curvature and either 
its mean curvature vanishes or the ambient is a semi-Euclidean space. We also treat 
in detail the surface case, giving a full characterization of the constant angle CMC 
surfaces immersed in all three dimensional space forms. They are isoparametric 
surfaces with constant principal curvatures when the ambient is flat. If the mean 
curvature of the surface is not ±2/

√
3 they are either totally umbilic or totally 

geodesic. In particular when the surface has zero mean curvature it is totally 
geodesic.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of the geometry of constant angle surfaces is as old as the classical theory of surfaces itself. 
As its name suggests, constant angle surfaces are immersed surfaces M2 ⊂ R

3 which make a constant angle 
with respect to a distinguished vector field Z. These surfaces can be thought as two dimensional analogues 
of well known curves that make constant angle with a prescribed direction, such as helices (fixed direction), 
logarithmic spirals (radial direction) or rhumb lines (direction given by meridians on the sphere). In this 
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context, one of the most fundamental questions in this field consists in classifying those constant angle 
surfaces that satisfy certain geometrical properties, such as being minimal, umbilical, etcetera.

In recent years, a renewed interest for such surfaces has grown and several interesting generalizations of 
the concept have arisen. For instance, the ambient space R3 has been replaced by cartesian products or 
warped products, or even Lorentzian 3-manifolds. Just to mention a few of the most relevant developments 
in this scenario, we have the classification of surfaces in R × S

2 and R × H
2 making a constant angle 

with respect to a constant field in the first factor [6,7,9]; or non-degenerate surfaces in Lorentz–Minkowski 
3-space R3

1 making a constant angle with a fixed non-lightlike direction [20,17]. Going one step further, 
notice that in the aforementioned cases the distinguished directions project to principal directions on M
with non-vanishing principal curvatures. Surfaces having this property are said to have a canonical principal 
direction and have been extensively studied both in the Riemannian and Lorentzian settings [5,8,13].

Another suitable generalization consists in replacing constant (i.e. parallel) directions for other types of 
distinguished vector fields that carry geometrical relevance, such as Killing fields [22]. Closed and conformal 
vector fields are a natural generalization of both parallel and Killing vector fields, since they are infinitesimal 
generators of conformal mappings that are locally gradient fields. The presence of a closed and conformal 
vector field in the ambient space is a powerful tool that can be used to establish classification results, as is 
illustrated by the work of S. Montiel [21] and A. Barros et al. [2] on spacelike hypersurfaces of constant mean 
curvature. In [16] hypersurfaces in Riemannian warped products making a constant angle with respect to 
a closed and conformal vector field are classified. In [24] and [1] similar classification results are established 
for Lorentzian 3-manifolds and Riemannian 3-dimensional space-forms, respectively.

In this work we study constant angle CMC hypersurfaces immersed in semi-Riemannian space forms, thus 
extending some of the results obtained in [1,4,13,11,16,17,20,22,24] to the context of closed and conformal 
vector fields. This paper is organized as follows. In section 2 we establish the notation and main results 
pertaining semi-Riemannian space forms and closed and conformal vector fields. In particular, we show 
that in any semi-Riemannian space form, any tangent vector can be extended locally to a closed and 
conformal vector field, which is essentially the projection of a parallel vector field. Moreover, in a space 
form of non-vanishing curvature, any closed and conformal vector field can be realized in such a way. In this 
section we also find formulae for the (intrinsic) Laplacian of the squared norm of a closed and conformal 
vector field defined along a semi-Riemannian hypersurface. In section 3 we develop the concept of a constant 
angle hypersurface in a semi-Riemannian manifold and prove under mild assumptions that hypersurfaces 
that make a constant angle with respect to a closed and conformal vector field have a canonical principal 
direction. In section 4 we deal with two special cases of geometric significance, namely, when Z is either 
orthogonal or tangent to M , and provide a full description in the semi-Euclidean scenario. Finally, in 
section 5 we present the classification of CMC surfaces in three dimensional semi-Riemannian space forms 
having a constant angle with respect to a closed and conformal vector field.

2. Preliminaries

Let us denote by Rn+2
s the semi-Euclidean space given by the real vector space Rn+2 endowed with the 

semi-Riemannian metric

〈u, v〉 = −u1v1 − . . .− usvs + us+1vs+1 + . . . + un+2vn+2,

and recall that a vector u ∈ TpR
n+2
s is called timelike, spacelike or lightlike if 〈u, u〉 is negative, positive, or 

zero, respectively. Furthermore, if u is non-lightlike then εu = ±1 will denote the sign of 〈u, u〉.
The non-degenerate hyperquadrics in Rn+2

s are totally umbilical and geodesically complete hypersurfaces 
with constant sectional curvature, and thus are locally isometric to a semi-Riemannian space form although 
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not simply connected in some cases. Since our analysis is purely local, we identify these hyperquadrics with 
the semi-Riemannian space forms of corresponding dimension and signature.

The pseudosphere of radius r > 0 is the hypersurface defined by

S
n+1
s (r) := {x ∈ R

n+2
s | − x2

1 − . . .− x2
s + x2

s+1 + . . . + x2
n+2 = r2},

which corresponds to the semi-Riemannian space form of constant sectional curvature c = 1/r2 of dimension 
n + 1 and index s.

Similarly, the pseudohyperbolic space form of radius r > 0 is the hypersurface

H
n+1
s (r) := {x ∈ R

n+2
s+1 | − x2

1 − . . .− x2
s+1 + x2

s+2 + . . . + x2
n+2 = −r2},

with dimension n + 1, index s and constant curvature c = −1/r2.

Remark 2.1. For simplicity, we denote the space forms Rn+1
s , Sn+1

s (r) and Hn+1
s (r) by M

n+1
s (c) where c = 0, 

c = 1/r2 or c = −1/r2 respectively. In a similar fashion, we denote by Rn+2
ν either of the semi-Euclidean 

ambient spaces Rn+2
s or Rn+2

s+1 . When c = 0 we take a totally geodesic immersion of Rn+1
s through the origin 

of Rn+2
ν .

In what follows, we will denote by D the Levi-Civita connection of the semi-Euclidean spaces Rn+2
ν while 

∇ will denote the Levi-Civita connection of Mn+1
s (c). Lastly, let us recall that since the space forms Mn+1

s (c)
are manifolds of constant sectional curvature c, its Riemann curvature tensor satisfies

R(X,Y )Z = c(〈Y,Z〉X − 〈X,Z〉Y ) (1)

for all smooth vector fields X, Y, Z ∈ Γ(TMn+1
s (c)).

We now define a class of vector fields that will be the key in this work.

Definition 2.2. A nonzero smooth vector field Z on a semi-Riemannian manifold M is called closed and 
conformal if there is a function ϕ ∈ C∞(M) such that ∇Y Z = ϕY for every smooth vector field Y on M . 
We call ϕ an associated function of Z.

Since closed and conformal vector fields can be thought as infinitesimal generators of conformal mappings, 
they are usually present in semi-Riemannian contexts where conformal symmetries play an important role. 
For instance, in the Lorentzian setting we have that lightlike (pre)geodesics are conformal invariants and 
thus closed and conformal vector fields arise naturally in scenarios like the study of plane gravitational 
waves [18,10].

From the definition, we immediately see that parallel vector fields are closed and conformal with ϕ ≡ 0. 
Let us point out that not all semi-Riemannian manifolds admit a non-parallel closed and conformal vector 
field. For instance, in the Riemannian setting no compact manifold with non-positive Ricci curvature has 
a non-parallel closed and conformal vector field [25], whereas in the presence of signature only a few such 
manifolds exist [19]. However, as the following result shows, this is not the case for semi-Riemannian space 
forms. Even further, any tangent vector u ∈ TpM

n+1
s (c) can be extended to a closed and conformal vector 

field Z in M
n+1
s (c).

Lemma 2.3. For every p ∈ M
n+1
s (c) and every u ∈ TpM

n+1
s (c) there exists a closed and conformal vector 

field Z on M
n+1
s (c) such that Z(p) = u. Moreover, the associated function of Z is given by

ϕ(x) = −c〈U(x), x〉,
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where U is the constant vector field along M
n+1
s (c) extending u and satisfies:

X · ϕ = −c〈Z,X〉, 〈Z(x), Z(x)〉 = 〈u, u〉 − ϕ2/c,

for all X ∈ Γ(Mn+1
s (c)).

Proof. Using the canonical embedding of the space form M
n+1
s (c) in a semi-Euclidean space Rn+2

ν we can 
extend u to a constant vector field U : Mn+1

s (c) → TRn+2
ν along M

n+1
s (c) and thus define Z by

Z(x) := U(x) − c〈U(x), x〉x.

First notice that in the case c = 0 the vector field Z(x) = U(x) is parallel, hence closed and conformal with 
ϕ ≡ 0 and the claims follow immediately. On the other hand, if c 	= 0 notice that for every x ∈ M

n+1
s (c)

we have 〈x, x〉 = 1/c with x orthogonal to TxM
n+1
s (c) and in particular, 〈p, u〉 = 0. These facts imply that 

〈x, Z(x)〉 = 0, i.e. Z(x) ∈ TxM
n+1
s (c) and Z(p) = u. Further, let X be a vector field in M

n+1
s (c) and note 

that

∇XZ = (DXZ)� = (−cDX(〈U, x〉x))�

= (−c〈U,X〉x− c〈U, x〉X)�

= −c〈U, x〉X.

Thus, Z is closed and conformal with ϕ(x) = −c〈U(x), x〉. Moreover, a straightforward calculation shows 
that

X · ϕ = −c(X · 〈U, x〉) = −c〈U,X〉 = −c〈Z,X〉.

Finally, note that ϕ〈U, x〉 = −ϕ2/c = −ϕ2〈x, x〉. Thus

〈Z,Z〉 = 〈U,U〉 + 2ϕ〈U, x〉 + ϕ2〈x, x〉 = 〈u, u〉 − ϕ2/c. �
Remark 2.4. Let us observe that in Lemma 2.3, if c > 0 and u is timelike then Z is a timelike vector field 
on M

n+1
s (c). Similarly, if c < 0 and u is spacelike then Z is everywhere spacelike as well.

Let us notice that Lemma 2.3 gives us a method for constructing closed and conformal vector fields on 
M

n+1
s (c). We now show that essentially all closed and conformal vector fields on M

n+1
s (c) come from such 

a construction. In order to do so, we first show that in semi-Riemannian space forms closed and conformal 
vector fields are gradient fields of its associated functions.

Lemma 2.5. Let Z be a closed and conformal vector field on a semi-Riemannian space form M
n+1
s (c) with 

associated function ϕ. Then ∇ϕ = −cZ.

Proof. Since Z is closed and conformal then for all X, Y ∈ Γ(TMn+1
s (c)) we have

∇X∇Y Z = ∇X(ϕY ) = (X · ϕ)Y + ϕ∇XY = 〈X,∇ϕ〉Y + ϕ∇XY.

In particular, if X = ∂i, Y = ∂j are two local coordinate vector fields around p ∈ M
n+1
s (c), in virtue of the 

above calculations and equation (1) we have two different expressions for the Riemann tensor given by:

R(∂i, ∂j)Z = 〈∂i,∇ϕ〉∂j − 〈∂j ,∇ϕ〉∂i,
R(∂i, ∂j)Z = c(〈∂j , Z〉∂i − 〈∂i, Z〉∂j).
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By comparing the above expressions we conclude that 〈∂i, cZ + ∇ϕ〉 = 0 for all coordinate vectors ∂i and 
thus cZ + ∇ϕ = 0. �
Corollary 2.6. Let Z be a closed and conformal vector field on M

n+1
s (c) with associated function ϕ. Then 

Z(x) = U + ϕx, where U is a parallel vector field of the corresponding semi-Euclidean space Rn+2
ν . If 

c = 0 then ϕ is constant and therefore Z is either parallel or radial. If c 	= 0, ϕ = −c〈U, x〉 and 〈Z, Z〉 =
〈U, U〉 − ϕ2/c.

Proof. Let x be the position vector field of Rn+2
ν . Observe that Mn+1

s (c) ⊂ R
n+2
ν is totally umbilical since 

its second fundamental form h satisfies

h(X,W ) = −c〈X,W 〉x ,

for every X, W ∈ Γ(TMn+1
s (c)). Set U := Z − ϕx. We claim that U is parallel along M

n+1
s (c). Indeed, by 

Lemma 2.5 we have

DWU = DWZ − (W · ϕ)x− ϕDWx

= ∇WZ + h(Z,W ) + c〈Z,W 〉x− ϕW

= ϕW + h(Z,W ) + c〈Z,W 〉x− ϕW = 0 ,

thus proving the claim. Moreover, if c = 0, Lemma 2.5 shows that ∇ϕ = 0, hence Z = U + ϕx with U
parallel and ϕ constant along M

n+1
s (c). It immediately follows that Z is either parallel (when ϕ ≡ 0) or 

radial with center in U (when ϕ 	= 0). Finally when c 	= 0, from the relation Z = U + ϕx we deduce that

0 = 〈Z, x〉 = 〈U, x〉 + ϕ/c,

from which ϕ = −c〈U, x〉 and 〈Z, Z〉 = 〈U, U〉 − ϕ2/c. �
Another interesting feature of closed and conformal vector fields is that their norm is constant along 

orthogonal vector fields.

Lemma 2.7. Let Z be a closed and conformal vector field on M
n+1
s (c) with |Z| 	= 0 and ϕ 	= 0. Then a vector 

field X ∈ Γ(Mn+1
s (c)) is orthogonal to Z if and only if X · |Z| = 0.

Proof. Let εZ be the sign of 〈Z, Z〉. Thus, by letting X act on both sides of the equation |Z|2 = εZ〈Z, Z〉, 
we have

2|Z|X · |Z| = 2εZ〈∇XZ,Z〉 = 2εZϕ〈X,Z〉 = 0.

Thus 〈X, Z〉 = 0 if and only if X · |Z| = 0. �
Definition 2.8. We say that an immersed hypersurface M ↪→ M

n+1
s (c) is semi-Riemannian if its induced 

metric is non-degenerate. In this context, the Levi-Civita connection of M will be denoted by ∇.

Lemma 2.9. Let M ⊂ M
n+1
s (c) be a semi-Riemannian hypersurface and let Z be a closed and conformal 

vector field on M
n+1
s with associated function ϕ. Then

∇ϕ = −cZ�.
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Proof. Let X ∈ Γ(TM) be any vector field on M . Then using Lemma 2.5 we have

〈∇ϕ,X〉 = X · ϕ = 〈∇ϕ,X〉 = 〈−cZ,X〉 = 〈−cZ�, X〉.

This finishes the proof since the induced metric in M is non-degenerate. �
If M is a semi-Riemannian hypersurface of Mn+1

s (c), we can always find a non-lightlike local unitary 
vector field ξ orthogonal to M . Thus, we can decompose any vector field Z of Mn+1

s (c) in its tangent and 
normal components Z� and Z⊥. Moreover, using this decomposition the standard form of the Gauss and 
Weingarten formulae can be written as

∇XY = ∇XY + α(X,Y ),

∇XN = −AN (X) + ∇⊥
XN,

for all X, Y ∈ Γ(TM), N ∈ Γ(T⊥M). See, for example [3,23]. Here AN denotes the shape operator of N , 
α the second fundamental form of M and ∇⊥ the normal connection of M . Let us recall that M is said 
to be totally umbilical if there exists a smooth function λ such that AN (X) = λX for all X ∈ Γ(TM). If 
λ ≡ 0 (or equivalently, the second fundamental form is null: α = 0) then M is totally geodesic. As a direct 
application of the Gauss–Weingarten formulae we establish the following lemmas:

Lemma 2.10. Let M ⊂ M
n+1
s (c) be a semi-Riemannian hypersurface and Z a closed and conformal vector 

field on M
n+1
s (c) with associated function ϕ. Then

∇XZ� = ϕX + AZ⊥(X)

α(X,Z�) = −∇⊥
XZ⊥.

In particular, if T = Z�/|Z�| then

∇Z�T = AZ⊥(T ).

Proof. Since Z is closed and conformal, we apply Gauss and Weingarten formulae to find

ϕX = ∇XZ = ∇XZ� + ∇XZ⊥

= ∇XZ� + α(X,Z�) −AZ⊥(X) + ∇⊥
XZ⊥.

Comparing tangent and normal components at both sides of the equation gives the general result at once. 
In a similar fashion, let us notice that

∇Z�
Z�

|Z�| = 1
|Z�|∇Z�Z� +

(
Z� · 1

|Z�|

)
Z�

=
(

ϕ

|Z�| + Z� · 1
|Z�|

)
Z� + AZ⊥(Z�).

Since T = Z�/|Z�| is unitary, we have that ∇Z�T is orthogonal to ZT , thus finishing the proof. �
Lemma 2.11. Let M ⊂ M

n+1
s (c) be a semi-Riemannian hypersurface and Z a closed and conformal vector 

field on M
n+1
s (c) with |Z| 	= 0. If Z is orthogonal to M then M is totally umbilical.
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Proof. Since Z is orthogonal to M then ξ = Z/|Z| is a unitary normal vector field defined along M . Let 
X ∈ Γ(TM). Then, by Lemma 2.7 we have

Aξ(X) = −∇Xξ = −
(
X · 1

|Z|

)
Z − 1

|Z|∇XZ

= − ϕ

|Z|X. �
We now proceed to find expressions for the intrinsic Laplacians of both the squared norm of a closed and 

conformal vector field defined along M and the squared norm of its tangent component. This latter formula 
generalizes to semi-Riemannian space forms a previous technique developed by D. Fetcu and H. Rosenberg 
in the context of parallel vector fields in H3 × R and S3 × R (see p. 715 in [12]). These results will be key 
ingredients for the analysis of constant angle hypersurfaces that we will perform in sections 4 and 5. First, 
recall that the mean curvature vector can be written in an orthonormal frame {e1, . . . , en} as

H =
n∑

i=1
εiα(ei, ei), (2)

where α is the second fundamental form of M and εi is the sign of 〈ei, ei〉. We also have the following 
expression for the (signed) square norm of α:

〈α, α〉 =
n∑

i,j=1
εiεj〈α(ei, ej), α(ei, ej)〉 (3)

Proposition 2.12. Let M be a semi-Riemannian hypersurface isometrically immersed in M
n+1
s (c) with mean 

curvature vector H. If Z is a closed and conformal vector field on M
n+1
s (c) with associated function ϕ, then


〈Z,Z〉 = 2(〈∇ϕ,Z〉 + ϕ〈H,Z〉 + ϕ2n). (4)

Proof. We will prove the relation pointwise. Let p ∈ M and {e1, . . . , en} be a local frame in M around p
such that ∇eiej |p = 0 for all i, j. Let εi = 〈ei, ei〉. Then


〈Z,Z〉 =
n∑

i=1
εiei · ei · 〈Z,Z〉 = 2

n∑
i=1

εiei · 〈ϕei, Z〉

= 2
n∑

i=1
εi[〈(ei · ϕ)ei, Z〉 + ϕ(〈∇eiei, Z〉 + 〈ei,∇eiZ〉)]

= 2
n∑

i=1
εi[〈(ei · ϕ)ei, Z〉 + ϕ(〈α(ei, ei), Z〉 + ϕ〈ei, ei〉)]

= 2(〈
n∑

i=1
εi(ei · ϕ)ei, Z〉 + ϕ〈

n∑
i=1

εiα(ei, ei), Z〉 + ϕ2
n∑

i=1
ε21)

= 2(〈∇ϕ,Z〉 + ϕ〈H,Z〉 + ϕ2n). �
Proposition 2.13. Let M be a semi-Riemannian hypersurface isometrically immersed in M

n+1
s (c) with second 

fundamental form α, mean curvature vector H and let Z be a closed and conformal vector field of Mn+1
s (c)

with associated function ϕ. Then the tangent component Z� of Z along M satisfies the equation
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〈Z�, Z�〉 = 2(Z� · 〈H,Z〉 + n〈∇ϕ,Z〉 + Ric(Z�, Z�)

+ εξ|Z⊥|2〈α, α〉 + 2ϕ〈H,Z〉 + nϕ2).

Proof. Let p ∈ M and choose a local orthonormal frame ei around p such that ∇eiej |p = 0. Then


〈Z�, Z�〉 =
n∑

i=1
εiei · ei · 〈Z�, Z�〉

= 2
[

n∑
i=1

εi〈∇ei∇eiZ
�, Z�〉 +

n∑
i=1

εi〈∇eiZ
�,∇eiZ

�〉
]
. (5)

In order to find a closed expression for the second sum we notice that

〈∇eiZ
�,∇eiZ

�〉 = 〈AZ⊥ei, AZ⊥ei〉 + 2ϕ〈AZ⊥ei, ei〉 + ϕ2〈ei, ei〉.

Thus

n∑
i=1

εi〈∇eiZ
�,∇eiZ

�〉 = |Z⊥|2〈α, α〉εξ + 2ϕ〈H,Z〉 + nϕ2. (6)

We now deal with the first sum. Since AZ� is symmetric, so it is ∇eiAZ� . Further, since ∇eiej |p = 0 we 
have (∇eiAZ⊥)ei = ∇ei(AZ⊥ei). Hence

n∑
i=1

εi〈∇eiAZ⊥ei, Z
�〉 =

n∑
i=1

εi〈(∇eiAZ⊥)ei, Z�〉

=
n∑

i=1
εi〈ei, (∇eiAZ⊥)Z�〉

=
n∑

i=1
εi〈ei,∇ei(AZ⊥Z�)〉 −

n∑
i=1

εi〈ei, AZ⊥(∇eiZ
�)〉.

Now we proceed to compute each of these two sums separately. First notice that

n∑
i=1

εi〈ei,∇ei(AZ⊥Z�)〉 =
n∑

1=i

εi〈ei,∇ei(∇Z�Z� − ϕZ�)〉

=
n∑

i=1
εi〈ei,∇ei∇Z�Z�〉 −

n∑
i=1

εi〈ei, ei · ϕZ�〉 −
n∑

i=1
εi〈ei, ϕ∇eiZ

�〉

=
n∑

i=1
εi〈ei,∇ei∇Z�Z�〉 − 〈∇ϕ,Z〉 − ϕ divZ�.

On the other hand, since ∇∇
Z�eiZ

�|p = 0 we have

n∑
i=1

εi〈ei, AZ⊥(∇eiZ
�)〉 =

n∑
i=1

εi〈ei,∇∇ei
Z�Z� − ϕ∇eiZ

�〉

=
n∑

εi〈ei,−∇[Z�,ei]Z
�〉 − ϕ divZ�.
i=1
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Thus we have

n∑
i=1

εi〈∇eiAZ⊥ei, Z
�〉 =

n∑
i=1

εi〈ei,∇ei∇Z�Z� + ∇[Z�,ei]Z
�〉 − 〈∇ϕ,Z〉

=
n∑

i=1
εi〈ei,∇Z�∇eiZ

� −RZ�eiZ
�〉 − 〈∇ϕ,Z〉

=
n∑

i=1
εi〈ei,∇Z�(AZ⊥ei + ϕei)〉 + Ric(Z�, Z�) − 〈∇ϕ,Z〉

=
n∑

i=1
εi〈∇Z�AZ⊥ei, ei〉 +

n∑
i=1

εi〈Z� · ϕei, ei〉 + Ric(Z�, Z�) − 〈∇ϕ,Z〉

=
n∑

i=1
εi〈∇Z�AZ⊥ei, ei〉 + (n− 1)〈∇ϕ,Z〉 + Ric(Z�, Z�)

=
n∑

i=1
εi(Z� · 〈AZ⊥ei, ei〉 − 〈AZ⊥ei,∇Z⊥ei〉) + (n− 1)〈∇ϕ,Z〉 + Ric(Z�, Z�)

= Z� · 〈H,Z〉 + (n− 1)〈∇ϕ,Z〉 + Ric(Z�, Z�).

Notice that we can find now the first sum as follows:

n∑
i=1

εi〈∇ei∇eiZ
�, Z�〉 =

n∑
i=1

εi〈∇ei(AZ⊥ei + ϕei), Z�〉

=
n∑

i=1
εi〈∇eiAZ⊥ei, Z

�〉 +
n∑

i=1
εi〈ei · ϕei, Z�〉 +

n∑
i=1

εi〈ϕ∇eiei, Z
�〉

= Z� · 〈H,Z〉 + n〈∇ϕ,Z〉 + Ric(Z�, Z�). (7)

Finally, by substituting equations (6) and (7) in (5) we get the desired formula for the Laplacian. �
3. Constant angle hypersurfaces

In the Riemannian setting, the angle between two hypersurfaces can be defined as the angle spanned by 
their normal vectors. In a similar fashion, the angle between a hypersurface M and a given vector field X
along it can be measured in terms of the angle spanned by the unit normal vector field ξ and X, and thus, 
if the function 〈X/|X|, ξ〉 is constant on M we say M is a constant angle hypersurface with respect to X. 
This notion can be easily generalized to the Lorentzian setting provided M is semi-Riemannian and X is 
non-lightlike [13,24]. The following definition is a further generalization of this concept to semi-Riemannian 
manifolds of any signature.

Definition 3.1. Let M be a semi-Riemannian hypersurface in M
n+1
s (c) and ξ a normal vector field to M in 

a neighborhood V of p ∈ M with 〈ξ, ξ〉2 = 1. Let Z be a closed and conformal vector field on M
n+1
s (c) that 

does not vanish along M . We say that M is a constant angle hypersurface with respect to Z if the product 
〈Z/|Z|, ξ〉 is constant along V ⊂ M .

In what follows, ξ will denote a local unitary vector field orthogonal to a semi-Riemannian hypersurface 
M isometrically immersed in M

n+1
s (c) and Z will denote a closed and conformal vector field on M

n+1
s (c)

with associated function ϕ that does not vanish along M .
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Remark 3.2. Let Z = Z� +Z⊥, where Z� ∈ TM and Z⊥ ∈ T⊥M are its tangent and normal components, 
respectively. Since our analysis will be local, we can assume that Z, Z� and Z⊥ have a constant causality, 
and we further assume none of them is lightlike. Notice that in particular none of them vanishes. That is, 
we will assume that

εZ := 〈Z,Z〉
|Z|2 , εT := 〈Z�, Z�〉

|Z�|2 and εξ := 〈Z⊥, Z⊥〉
|Z⊥|2

are constant nonzero locally. In particular, we have to deal with the cases in which Z is orthogonal to M
(i.e. Z� = 0) or tangent to M (i.e. Z⊥ = 0) separately.

Lemma 3.3. Let Z = Z� + Z⊥ be the decomposition of Z in its tangent and normal parts along M . Then 
the following are equivalent:

1. M is a constant angle hypersurface with respect to Z.
2. 〈Z/|Z|, Z�/|Z�|〉 is constant.
3. 〈Z�/|Z|, Z�/|Z|〉 is constant.
4. 〈Z⊥/|Z|, Z⊥/|Z|〉 is constant.

Moreover, we have the following relations

〈Z⊥, Z⊥〉 = εξ〈Z, ξ〉2,

〈Z�, Z�〉 = εTλ
2

μ2 〈Z, ξ〉2,

〈Z,Z〉 = εZ
μ2 〈Z, ξ〉

2,

where λ and μ are such that Z

|Z| = λT + μξ, with T = Z�

|Z�| .

Proof. Let us observe that Z� = |Z|λT and Z⊥ = |Z|μξ. In virtue of the relation

εZ = εTλ
2 + εξμ

2 (8)

it follows that λ is constant if and only if μ is constant. Now, let us observe that

〈Z/|Z|, Z�/|Z�|〉 = 〈Z�/|Z|, T 〉 = 〈λT, T 〉 = εTλ,

〈Z�/|Z|, Z�/|Z|〉 = 〈λT, λT 〉 = εTλ
2,

〈Z⊥/|Z|, Z⊥/|Z|〉 = 〈μξ, μξ〉 = εξμ
2.

Moreover, by definition, M is a constant angle hypersurface with respect to Z if and only if the function 
〈Z/|Z|, ξ〉 = εξμ is constant. The result readily follows. �

We continue our analysis of constant angle hypersurfaces showing that they belong to the class of hyper-
surfaces with a canonical principal direction. We need first an easy calculation.

Lemma 3.4. Let M ⊂ M
n+1
s (c) be a constant angle hypersurface with respect to a closed and conformal 

vector field Z with associated function ϕ. Then
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∇|Z| = εZϕ

|Z| Z
�

Proof. Let {e1, . . . , en} be an orthonormal frame defined in a neighborhood of p ∈ M . Thus

∇〈Z,Z〉 =
n∑

i=1
εi(ei · 〈Z,Z〉)ei = 2ϕ

n∑
i=1

εi〈ei, Z〉ei = 2ϕZ�.

On the other hand, ∇|Z|2 = 2|Z|∇|Z|. Thus

∇|Z| = ∇εZ〈Z,Z〉
2|Z| = εZϕ

|Z| Z
�. �

Proposition 3.5. Let M ⊂ M
n+1
s (c) be a constant angle hypersurface with respect to a closed and conformal 

vector field Z with associated function ϕ. Then

Aξ(Z�) = kZ�, where k = −εZϕ〈Z, ξ〉
|Z|2 . (9)

That is, Z� is a principal direction of M with principal curvature k given by (9). Moreover, the integral 
curves of T = Z�/|Z�| are geodesics of M .

Proof. As before, we work at p ∈ M . Let {e1, . . . , en} be an orthonormal frame at p such that ∇eiej |p = 0. 
Since Z is closed and conformal, 〈∇eiZ, ξ〉 = 〈ϕei, ξ〉 = 0. Thus

∇〈Z, ξ〉 =
n∑

i=1
εi(ei · 〈Z, ξ〉)ei =

n∑
i=1

εi〈Z,−Aξei〉ei

=
n∑

i=1
εi〈Z�,−Aξei〉ei =

n∑
i=1

εi〈ei,−Aξ(Z�)〉ei

= −Aξ(Z�).

A similar computation yields

∇〈Z,Z〉 =
n∑

i=1
εi(ei · 〈Z,Z〉)ei = 2ϕ

n∑
i=1

εi〈ei, Z〉ei = 2ϕZ�.

On the other hand, ∇|Z|2 = 2|Z|∇|Z| implies that

∇|Z| = ∇εZ〈Z,Z〉
2|Z| = εZϕ

|Z| Z
�.

Then

∇ 1
|Z| = − εZϕ

|Z|3Z
�.

Now, since M has constant angle with respect to Z we have

0 = ∇〈Z, ξ〉 = 〈Z, ξ〉∇ 1 + 1 ∇〈Z, ξ〉
|Z| |Z| |Z|
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and hence

Aξ(Z�) = −∇〈Z, ξ〉 = |Z|〈Z, ξ〉∇ 1
|Z| = −εZϕ〈Z, ξ〉

|Z|2 Z�.

As a consequence, by Lemma 2.10 we have that ∇TT is both a multiple of Z� and orthogonal to it. Hence 
∇TT = 0, which means that the integral lines of T are geodesics. �
Remark 3.6. Notice that the result in Proposition 3.5 is equivalent to

α(Z�, Z�) = −εξεZεTϕ|Z�|2〈Z, ξ〉
|Z|2 ξ.

Corollary 3.7. Let M be a hypersurface isometrically immersed in M
n+1
s (c) with mean curvature vector H

and let Z be a closed and conformal vector field with associated function ϕ. If M has constant angle with 
respect to Z then the Ricci curvature of M in the direction Z� is given by

Ric(Z�, Z�) = εT |Z�|2
(

(n− 1)c− εξεZϕ〈H, ξ〉〈Z, ξ〉
|Z|2 − εξϕ

2〈Z, ξ〉2
|Z|4

)
.

In particular, if M is a two dimensional surface then its curvature is

K = c− εξεZϕ〈H, ξ〉〈Z, ξ〉
|Z|2 − εξϕ

2〈Z, ξ〉2
|Z|4 .

Proof. By Proposition 2.3 in [3] page 35,

Ric(Z�, Z�) = (n− 1)〈Z�, Z�〉c + 〈H,α(Z�, Z�)〉

−
n∑

i=1
εi〈α(Z�, ei), α(Z�, ei)〉,

where {e1, . . . , en} is an orthonormal frame of M . We can choose e1 to be Z�/|Z�|. Then, by Proposition 3.5, 
we have α(Z�, ej) = 0 for every j ≥ 2 and

〈H,α(Z�, Z�)〉 = −εξεZεTϕ|Z�|2〈Z, ξ〉〈H, ξ〉
|Z|2

〈α(Z�, Z�), α(Z�, Z�)〉 = εξϕ
2|Z�|4〈Z, ξ〉2

|Z|4 .

The formulae follow from a straightforward substitution. �
The next result characterizes the hypersurfaces in a semi-Euclidean space with zero mean curvature and 

making a constant angle with respect to a radial vector field in the ambient space.

Corollary 3.8. Let M ⊂ R
n+1
s be a constant angle hypersurface with respect to a radial vector field Z in 

R
n+1
s . If M has zero mean curvature then Ric(Z�, Z�) = −εξεTλ

2μ2ϕ2 is constant. In particular, if this 
constant is zero then either Z is tangent or orthogonal to M .

Proof. Since Z is radial we have that ϕ 	= 0 is constant. Since H = 0 and c = 0 by hypothesis, Corollary 3.7
yields



M. Navarro et al. / Differential Geometry and its Applications 49 (2016) 473–495 485
Ric(Z�, Z�) = −εξεT |Z�|2ϕ2〈Z, ξ〉2
|Z|4 .

Thus Ric(Z�, Z�) = 0 if and only if Z is either tangent (i.e. 〈Z, ξ〉 = 0) or orthogonal (i.e. Z� = 0) 
to M . Otherwise, we can use the relations in Lemma 3.3 to conclude that Ric(Z�, Z�) = −εξεTλ

2μ2ϕ2 is 
a non-zero constant. �
Proposition 3.9. Let M ⊂ M

n+1
s (c) be a constant angle hypersurface with respect to a closed and conformal 

vector field Z with associated function ϕ and let H be the mean curvature vector of M . Then


〈Z�, Z�〉 = 2εT εZ |Z�|2
|Z|2

(
〈∇ϕ,Z〉 + ϕ〈H,Z〉 + ϕ2n

)
.

Proof. Since M has constant angle with respect to Z, by Lemma 3.3 we have that λ is constant. Thus we 
take the Laplacian in both sides of 〈Z�, Z�〉 = εT εZλ

2〈Z, Z〉 to obtain


〈Z�, Z�〉 = εT εZλ
2
〈Z,Z〉

= 2εT εZλ2(〈∇ϕ,Z〉 + ϕ〈H,Z〉 + ϕ2n)

and the result follows. �
4. CMC constant angle hypersurfaces

In this section we use the results proven so far in the analysis of constant mean curvature (CMC) 
hypersurfaces having a constant angle with respect to a closed and conformal vector field. As a first step, 
we derive a formula that generalizes J. Simons’ formula for the intrinsic Laplacian of the normal component 
of a parallel vector field to our context (refer to [26], p. 89).

4.1. Simons type formula and applications

Theorem 4.1. Let M be a semi-Riemannian hypersurface isometrically immersed in M
n+1
s (c) with CMC and 

let ξ be a local unitary vector field orthogonal to M . If Z is a closed and conformal vector field on M
n+1
s (c)

with associated function ϕ, then


〈Z, ξ〉 + 〈α, α〉〈Z, ξ〉 + ϕ〈H, ξ〉 = 0, (10)

where α is the second fundamental form of the immersion and H is the mean curvature vector of M .

Proof. As we have done before, we consider a local frame in M around p such that ∇eiej |p = 0. Then by 
Equation (2) the Laplacian is given by


〈Z, ξ〉 =
n∑

i=1
εiei · ei · 〈Z, ξ〉

=
n∑

i=1
εiei · 〈Z,∇eiξ〉 = −

n∑
i=1

εiei · 〈Z,Aξ(ei)〉

= −ϕ
n∑

i=1
εi〈ei, Aξ(ei)〉 −

n∑
i=1

εi〈Z,∇eiAξ(ei)〉

= −ϕ〈H, ξ〉 −
n∑

εi〈Z,∇eiAξ(ei)〉 −
n∑

εi〈Z,α(ei, Aξ(ei))〉. (11)

i=1 i=1
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We now compute the last term in the right hand side of Equation (11) taking into account Equation (3):

n∑
i=1

εi〈Z,α(ei, Aξ(ei))〉 =
n∑

i=1
εi〈Z,α(ei,

n∑
j=1

εj〈Aξ(ei)), ej〉ej)〉

=
n∑

i=1
εiεj〈Z,α(ei, ej)〉〈α(ei, ej), ξ〉

=
n∑

i=1
εξεiεj〈α(ei, ej), ξ〉2〈Z, ξ〉

=
n∑

i=1
εiεj〈α(ei, ej), α(ei, ej)〉〈Z, ξ〉

= 〈α, α〉〈Z, ξ〉.

Finally, let us show that the remaining term in the right hand side of equation (11) vanishes. First we 
consider

∇eiAξ(ei) =
n∑

j=1
∇ei(εj〈Aξ(ei), ej〉ej) =

n∑
j=1

εj(ei · 〈α(ei, ej), ξ〉)ej

=
n∑

j=1
εj(ei · 〈∇ejei, ξ〉)ej =

n∑
j=1

εj〈∇ei∇ejei, ξ〉ej .

By the curvature formula (1) we have 〈∇ei∇ejek, ξ〉 = 〈∇ej∇eiek, ξ〉 and thus

∇eiAξ(ei) =
n∑

j=1
εj〈∇ej∇eiei, ξ〉ej

=
n∑

j=1
εj〈∇ej∇eiei, ξ〉ej +

n∑
j=1

εj〈∇ejα(ei, ei), ξ〉ej

=
n∑

j=1
εj〈α(ej ,∇eiei), ξ〉ej +

n∑
j=1

εj〈∇⊥
ejα(ei, ei), ξ〉ej

=
n∑

j=1
εj〈∇⊥

ejα(ei, ei), ξ〉ej .

Finally, since M has constant mean curvature, we have

n∑
i=1

εi∇eiAξ(ei) =
n∑

j=1
εj〈∇⊥

ej

n∑
i=1

εiα(ei, ei), ξ〉ej

=
n∑

j=1
εj〈∇⊥

ejH, ξ〉ej = 0,

and the result follows. �
As a first application of Theorem 4.1 we have the following result:
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Corollary 4.2. Let M be a semi-Riemannian hypersurface immersed in a semi-Euclidean space making a 
constant angle with respect to a parallel vector field Z. Then Ric(Z�, Z�) = 0 and the integral curves of 
Z� are straight line segments in the ambient, i.e. M is ruled. Moreover, if Z is not tangent to M then M
has constant mean curvature in the direction Z� if and only if 〈α, α〉 = 0.

Proof. Since Z is parallel and M has constant angle, we have that ϕ ≡ 0 and 〈Z, ξ〉 is constant. We have 
Ric(Z�, Z�) = 0 as a consequence of Corollary 3.7. Further, Remark 3.6 implies that α(Z�, Z�) = 0. 
Moreover, Lemma 2.10 coupled with Proposition 2.6 implies that ∇Z�Z� = 0, which in turns yields by 
Gauss formula

DZ�Z� = ∇Z�Z� + α(Z�, Z�) = 0,

so the integral curves of Z� are straight lines. Now suppose that Z is not tangent to M , or equivalently 
that 〈Z, ξ〉 	= 0. Notice that by Proposition 3.9 we have that Δ〈Z�, Z�〉 = 0. Hence Theorem 2.13 implies 
the relation

0 = Z� · 〈H,Z〉 + εξ|Z⊥|2〈α, α〉
= εξ〈Z, ξ〉Z� · 〈H, ξ〉 + εξ|Z⊥|2〈α, α〉.

Thus

Z� · 〈H, ξ〉 = −〈Z, ξ〉〈α, α〉

and the proof is complete. �
Remark 4.3. As opposed to the Riemannian scenario, a hypersurface in a semi-Euclidean space with 〈α, α〉 =
0 is not necessarily totally geodesic. This feature has its roots in the fact that a self-adjoint operator respect 
to a non-positive definite product might not be diagonalizable. However, when the shape operator of M
is diagonalizable (for instance, when M is spacelike) then the condition 〈α, α〉 = 0 guarantees that M is 
totally geodesic.

The next Corollary generalizes known facts in the Riemannian case but with weaker hypothesis.

Corollary 4.4. Let M be a semi-Riemannian hypersurface immersed in a semi-Euclidean space making a 
constant angle with respect to a parallel vector field Z. Let us assume that Z is not tangent to M . If M has 
constant mean curvature in the direction Z� then any of the two following conditions imply that M is an 
open part of a hyperplane:

1. Either M is spacelike or Aξ is diagonalizable.
2. The semi-Euclidean ambient is the Minkowski space, M is timelike and ZT is timelike.

Proof. By Corollary 4.2, 〈α, α〉 = 0. In virtue of Remark 4.3, we deduce that M is totally geodesic in case 
(1). On the other hand, if (2) holds, then since M and Z� are timelike, then the slices M ∩Π of M with hy-
perplanes Π orthogonal to Z are spacelike. Then the shape operator Aξ of M is diagonalizable because Z� is 
a principal direction with zero principal curvature. The shape operator admits an orthogonal decomposition 
in the direction Z� and the directions tangent to M ∩ Π and the result follows from case (1). �
Lemma 4.5. Let M ⊂ M

n+1
s (c) be a constant angle hypersurface with respect to a closed and conformal 

vector field Z. If M has CMC then
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Z� · 〈H,Z〉 = εξεT εZλ
2ϕ〈H, ξ〉〈Z, ξ〉.

Proof. First notice that 〈H, Z〉 = 〈H, Z⊥〉 = εξ〈H, ξ〉〈Z, ξ〉. By hypothesis, 〈H, ξ〉 is constant. Thus

Z� · 〈H,Z〉 = εξ〈H, ξ〉Z� · 〈Z, ξ〉
= εξ〈H, ξ〉ϕ〈Z�, ξ〉 + εξ〈H, ξ〉〈Z,∇Z�ξ〉
= −εξ〈H, ξ〉〈Z�, Aξ(Z�)〉

and the result follows from Lemmas 3.5 and 3.3. �
4.2. Two special cases: Z orthogonal or tangent to M

We now proceed to briefly discuss the special cases that were not taken into account in the derivation of 
Lemma 3.3. In this subsection we will assume that Z is either tangent or orthogonal to M .

The orthogonal case follows immediately from Lemma 2.11.

Corollary 4.6. Let M be a CMC hypersurface isometrically immersed in M
n+1
s (c). If Z is a closed and 

conformal vector field orthogonal to M , then M is totally umbilical.

We now analyze in detail the tangent case.

Corollary 4.7. Let M be a CMC hypersurface isometrically immersed in M
n+1
s (c). If Z is tangent to M

then it has constant zero Gauss–Kronecker curvature and either M has zero mean curvature or c = 0, i.e. 
M

n+1
s (c) is a semi-Euclidean space Rn+1

s . Moreover, the Ricci curvature of M in the direction Z� is given 
by

Ric(Z�, Z�) = (n− 1)〈Z�, Z�〉c. (12)

In particular, if dimM = 2 then either M is totally geodesic or c = 0.

Proof. Since Z is tangent to M (i.e. Z = Z�), we deduce that 〈Z, ξ〉 = 0 and in particular M has constant 
angle. By Proposition 3.5, we conclude that M satisfies Aξ(Z�) = 0, i.e. zero is a principal curvature of M . 
This proves that M has zero Gauss–Kronecker curvature. Moreover, by Theorem 4.1, ϕ〈H, ξ〉 = 0 along M . 
Let us observe that by hypothesis 〈H, ξ〉 is constant, then either 〈H, ξ〉 ≡ 0 or 〈H, ξ〉 	= 0. In the former 
case we obtain H = 0, i.e. M has zero mean curvature. In the latter, we deduce that ϕ ≡ 0 along M and 
this implies by Lemma 2.9 that c = 0. Further, by Corollary 3.7, the hypothesis 〈Z, ξ〉 = 0 implies that

Ric(Z�, Z�) = εT |Z�|2(n− 1)c = (n− 1)〈Z�, Z�〉c.

Finally, let us consider dimM = 2 and c 	= 0. Let {T, W} be a local orthonormal frame in M that extends 
T = Z/|Z|. Thus

εTα(T, T ) + εWα(W,W ) = H = 0.

Let us recall that, by Proposition 3.5, we have the condition α(T, X) = 0 for every X ∈ Γ(TM). Thus, 
α(T, T ) = 0 = α(T, W ) and therefore α(W, W ) = 0, which shows that α = 0. �

We now describe in detail the case c = 0 when Z is either orthogonal or tangent to M . The following 
Lemma – whose proof is a straightforward adaptation of the one given in Y. Xin (see p. 64 in [27]) for the 
Riemannian case – will be key for our analysis.
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Let Σ be a hypersurface in the hyperquadric either Q = S
n+1
s (1) or Q = H

n+1
s−1 (1) of Rn+2

s . If ε > 0, we 
define the hypercone CΣε by

CΣε = {λx ∈ R
n+2
s | x ∈ Σ, λ ∈ (ε,+∞)}.

Lemma 4.8. Let Σ be a hypersurface in a hyperquadric Q of Rn+2
s . If the hypercone CΣε over Σ has CMC 

in Rn+2
s then Σ has zero mean curvature in the hyperquadric Q and therefore CΣε has zero mean curvature 

in the semi-Euclidean ambient.

Let us recall that, by Corollary 2.6, a non-zero closed and conformal vector field Z in a semi-Euclidean 
space Rn+2

s is either constant Z(x) = U for some U ∈ R
n+2
s or radial, i.e. Z(x) = U +ax for some a 	= 0 ∈ R

and U ∈ R
n+2
s .

Corollary 4.9. Let M ⊂ R
n+2
s be a constant angle hypersurface with respect to a closed and conformal vector 

field Z ∈ Γ(Rn+2
s ). If M has CMC then M is an open part of either a hyperquadric, a hyperplane, a cylinder 

over a CMC hypersurface in the hyperplane orthogonal to Z or a hypercone with zero mean curvature over 
a hypersurface with zero mean curvature in a hyperquadric Q.

Proof. We assume that Z is either orthogonal or tangent to M . In the former case M is totally umbilical 
by Corollary 4.6. Recall that in virtue of Corollary 2.6 the vector field Z is of the form Z(x) = U + ϕx. It 
is well known that the hyperquadrics and the hyperplanes are the only totally umbilical hypersurfaces in 
R

n+2
s that are orthogonal to such vector fields Z.
Moreover, the hyperquadrics are orthogonal to radial vector fields which are closed and conformal, whereas 

every hyperplane is orthogonal to a parallel vector field [3]. (Notice that totally umbilical submanifolds of 
the form (4) in Proposition 3.6 in [3] are not orthogonal to a parallel vector field.) In the later case, namely, 
when Z is tangent to M , we have two possibilities, depending whether Z is parallel or radial.

1. When Z is parallel, M is a cylinder over a CMC hypersurface N ⊂ σ, where σ is some translation of the 
hyperplane σ := (span Z)⊥. This cylinder M is isometric to N × R where R has either a Riemannian 
or Lorentzian metric depending whether Z is spacelike or timelike, respectively. Since M is a product, 
Z is a principal direction of M with associated principal curvature equal to zero. This implies that N
has constant mean curvature in σ.

2. When Z is radial, i.e. Z(x) = U + ax for some a 	= 0 ∈ R and U ∈ R
n+2
s . Since Z is tangent, M is 

an open part of a hypercone C := a · CεΣ + U where Σ is a hypersurface in a hyperquadric either 
Q = S

n+1
s (1) or Q = H

n+1
s−1 (1) of Rn+2

s . Then by Lemma 4.8, we conclude that our hypercone C has zero 
mean curvature in Rn+2

s and Σ has zero mean curvature in the hyperquadric Q. �
5. CMC constant angle surfaces

In this section we study the case of CMC semi-Riemannian surfaces M isometrically immersed in M
3
s(c)

making constant angle with respect to a closed and conformal vector field Z. We will focus on the Simons’ 
type formula (10) derived in Theorem 4.1 and show that under our hypothesis it gives rise to a polynomial 
expression in the variable y = 〈Z, ξ〉. We begin by finding adequate expressions for 〈α, α〉 and Δ〈Z, ξ〉 in 
Lemmas 5.1 and 5.3.

Lemma 5.1.

〈α, α〉 = 2εξμ4ϕ2

〈Z, ξ〉2 + εξ〈H, ξ〉2 + 2εξεZμ2〈H, ξ〉ϕ
〈Z, ξ〉 .
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Proof. Let W ∈ Γ(TM) with 〈W, W 〉 = εW and 〈W, T 〉 = 0, where T = Z�/|Z�|. Then

εWα(W,W ) + εTα(T, T ) = H = εξ〈H, ξ〉ξ,

and by Remark 3.6

α(W,W ) = εW (εξ〈H, ξ〉ξ − εTα(T, T ))

= εW

(
εξ〈H, ξ〉 + εξεZϕ〈Z, ξ〉

|Z|2
)
ξ.

Therefore,

〈α, α〉 =
∑
i,j

εiεj〈α(ei, ej), α(ei, ej)〉

= 〈α(T, T ), α(T, T )〉 + 〈α(W,W ), α(W,W )〉

= ϕ2〈Z, ξ〉2
|Z|4 εξ +

(
εξ〈H, ξ〉 + εξεZϕ〈Z, ξ〉

|Z|2
)2

εξ

= εξ

(
ϕ2〈Z, ξ〉2

|Z|4 + 〈H, ξ〉2 + 2εZ
ϕ〈H, ξ〉〈Z, ξ〉

|Z|2 + ϕ2〈Z, ξ〉2
|Z|4

)

= 2εξϕ2〈Z, ξ〉2
|Z|4 + εξ〈H, ξ〉2 + 2εξεZϕ〈H, ξ〉〈Z, ξ〉

|Z|2

= 2εξμ4ϕ2

〈Z, ξ〉2 + εξ〈H, ξ〉2 + 2εξεZμ2〈H, ξ〉ϕ
〈Z, ξ〉 . �

Proposition 5.2. Let us assume that c = 0, i.e. M3
s(c) is the semi-Euclidean space R3

s. If Z is parallel and it 
is neither orthogonal nor tangent to M , then M is a portion of a plane.

Proof. Let us observe that in virtue of Corollary 2.6 we have ϕ = 0. We know by Corollary 4.2 that 
〈α, α〉 = 0. Therefore, by Lemma 5.1 we have εξ〈H, ξ〉2 = 0 and thus H = 0. Consider now and orthonormal 
frame {T, W} in M like in Corollary 4.7. Hence

0 = H = εWα(W,W ) + εTα(T, T ).

And we know by Proposition 3.5 that α(T, T ) = α(T, W ) = 0, so α = 0. Thus M is totally geodesic, hence 
a plane in R3

1. �
Now, we are going to obtain the Laplacian of 〈Z, ξ〉.

Lemma 5.3.

Δ〈Z, ξ〉 = −c〈Z, ξ〉 + cεZεξμ
2〈Z, ξ〉 + εZεξμ

2ϕ〈H, ξ〉 + (εZ + εξμ
2)μ2ϕ2

〈Z, ξ〉 .

Proof. Due to the fact that

〈∇ϕ,Z〉 = 〈−cZ�, Z〉 = −c〈Z�, Z�〉 = −cεT
λ2

μ2 〈Z, ξ〉
2,

we obtain
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Δ〈Z, ξ〉 = 〈Z, ξ〉
|Z|2

(
εZ(〈∇ϕ,Z〉 + ϕ〈H,Z〉 + 2ϕ2) − ϕ2〈Z�, Z�〉

|Z|2
)

= μ2

〈Z, ξ〉

(
−cεZεT

λ2

μ2 〈Z, ξ〉
2 + εZεξϕ〈H, ξ〉〈Z, ξ〉 + 2εZϕ2 − εTλ

2ϕ2
)

= −cεZεTλ
2〈Z, ξ〉 + εZεξμ

2ϕ〈H, ξ〉 + (2εZ − εTλ
2)μ2ϕ2

〈Z, ξ〉

= −c(1 − εZεξμ
2)〈Z, ξ〉 + εZεξμ

2ϕ〈H, ξ〉 + (2εZ + εξμ
2 − εZ)μ2ϕ2

〈Z, ξ〉

= −c〈Z, ξ〉 + cεZεξμ
2〈Z, ξ〉 + εZεξμ

2ϕ〈H, ξ〉 + (εZ + εξμ
2)μ2ϕ2

〈Z, ξ〉 . �
Lemma 5.4. The function y = 〈Z, ξ〉 satisfies the relation

(
εξa

2 − cεZ(εZ − εξμ
2)
)
y2 + εZabϕy + bμ2ϕ2 = 0, (13)

where a = 〈H, ξ〉 and b = εZ + 3εξμ2.

Proof. By the Simons’ type formula (10), it follows that

0 = −c(1 − εZεξμ
2)〈Z, ξ〉 + εZεξμ

2ϕ〈H, ξ〉 + (εZ + εξμ
2)μ2ϕ2

〈Z, ξ〉

+ 2εξμ4ϕ2

〈Z, ξ〉 + εξ〈H, ξ〉2〈Z, ξ〉 + 2εξεZμ2〈H, ξ〉ϕ + ϕ〈H, ξ〉.

Therefore

0 =
(
εξ〈H, ξ〉2 − c(1 − εZεξμ

2)
)
〈Z, ξ〉 + (3εZεξμ2 + 1)ϕ〈H, ξ〉

+ (εZ + 3εξμ2)μ2ϕ2

〈Z, ξ〉 ,

which implies that

0 =
(
εξ〈H, ξ〉2 − cεZ(εZ − εξμ

2)
)
〈Z, ξ〉2

+ εZ(3εξμ2 + εZ)〈H, ξ〉ϕ〈Z, ξ〉 + (εZ + 3εξμ2)μ2ϕ2.

Now, by letting a = 〈H, ξ〉, b = εZ + 3εξμ2 and y = 〈Z, ξ〉, we arrive at the desired expression. �
Theorem 5.5. Let M be a semi-Riemannian CMC hypersurface in M

3
s(c) making a constant angle with a 

closed and conformal vector field Z. If Z is neither tangent nor orthogonal to M then the function y = 〈Z, ξ〉
satisfies a polynomial equation of degree at most 4.

Proof. We analyze the case c = 0 first. In this case, Equation (13) in Lemma 5.4 gives at once

εξa
2y2 + εZabϕy + bμ2ϕ2 = 0. (14)

Notice that since M has constant angle, Lemma 3.3 guarantees that both μ2 and b are constant. Moreover, 
since M is CMC then a is constant as well. Finally, since c = 0 then ϕ is constant by Corollary 2.6. Thus 
Equation (14) is indeed a polynomial in y of degree at most 2.
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Now we deal with the case c 	= 0. Let us consider the equivalent form of Equation (13)
(
εξa

2 − cεZ(εZ − εξμ
2)
)
y2 + bμ2ϕ2 = −εZabϕy,

and square both sides to obtain

a2b2ϕ2y2 =
(
εξa

2 − cεZ(εZ − εξμ
2)
)2

y4

+ 2
(
εξa

2 − cεZ(εZ − εξμ
2)
)
bμ2ϕ2y2 + b2μ4ϕ4.

Thus we have

δ2y4 + (2δbμ2 − a2b2)ϕ2y2 + b2μ4ϕ4 = 0, (15)

where

δ = εξa
2 − cεZ(εZ − εξμ

2)

is a constant. Now, using Corollary 2.6 we can express ϕ2 in terms of y = 〈Z, ξ〉 as follows: First note that 
d = 〈U, U〉 = 〈Z, Z〉 + ϕ2/2 is constant since U = Z − ϕx is parallel. Thus

ϕ2 = c

(
d− εZ

μ2 〈Z, ξ〉
2
)

= c

(
d− εZ

μ2 y
2
)

and

ϕ4 = c2
(
d2 − 2dεZ

μ2 y2 + 1
μ4 y

2
)
.

Then from Equation (15) we obtain

δ2y4 + (2δbμ2 − a2b2)c
(
d− εZ

μ2 y
2
)
y2 + b2μ4c2

(
d2 − 2dεZ

μ2 y2 + y4

μ4

)
= 0

which simplifies to

βy4 + γy2 + b2μ4c2d2 = 0, (16)

where

β = δ2 − c(2δbμ2 − a2b2)εZ
μ2 + b2c2,

and

γ = cd(2δbμ2 − a2b2) − 2εZdb2μ2c2

are constant. Thus (16) is a polynomial of degree at most 4 and the proof is complete. �
Now we are ready to extract some conclusions from Theorem 5.5. As we have done before, we deal with 

the c = 0 case first.

Corollary 5.6. Let M be a CMC semi-Riemannian surface isometrically immersed in R3
s and making a 

constant angle with respect to a closed and conformal vector field Z. Then either
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1. M is an open portion of a plane.
2. M is an open portion of a quadric.
3. M is an open portion of a cylinder in direction Z over a curve with constant curvature in a plane 

orthogonal to Z.

This means that M is isoparametric.

Proof. If Z is orthogonal to M then Corollary 4.6 establishes that M is totally umbilical, hence, it is an 
open portion of a quadric when Z is radial, or a plane when Z is parallel. Further, if Z is tangent to M
then by Corollary 4.9, we have two possibilities:

1. If Z is parallel, then M is a cylinder over a CMC curve in a plane orthogonal to Z. The generator of 
the cylinder is parallel to Z and the curve has constant curvature in the plane – so the curve is a circle, 
a hyperbola or a line.

2. If Z is radial then M is a cone over a minimal curve in a quadric. This means that the curve is a 
geodesic. So, M is a radial cone over a geodesic in a quadric and therefore M is a plane. Let us recall 
that the geodesics in a quadric are the intersection of a quadric with a plane across the center of the 
quadric.

Now, let us assume that Z is neither orthogonal nor tangent to M , then Equation (14) holds. If polynomial 
(14) does not vanish identically, it follows that y = 〈Z, ξ〉 is a constant, being the root of a polynomial. 
Since M has constant angle, we have by definition that 〈Z/|Z|, ξ〉 is constant and therefore |Z| is a constant 
as well. By Lemma 3.4, we have that ϕ ≡ 0 since Z is not orthogonal to M by hypothesis. Thus we have 
that Z is parallel and Proposition 5.2 asserts that M is an open portion of a plane.

The only case remaining occurs when polynomial (14) vanishes identically. By looking at the coefficients 
we immediately see that this happens if and only if a = 〈H, ξ〉 = 0 and either b = εZ + 3εξμ2 = 0 or ϕ ≡ 0. 
The latter case has been analyzed already, whereas the former case yields H = 0 and μ2 = −εZεξ/3. This 
implies that εZ = −εξ and thus the ambient space can not be Euclidean, so it should be the Minkowski 
space R3

1 or else R3
2. In either case, relation (8) in Lemma 3.3 guarantees that εT = εZ . Therefore we 

have two cases: either M is timelike and then εξ = 1, εT = −1 = εZ ; or else M is spacelike and then 
εξ = −1, εT = 1 = εZ . In the Minkowski case both options imply that M is a portion of a plane (refer to 
Remark 3.6 in p. 1107 of [15] for the timelike case and Remark 3.6 in p. 218 of [14] for the spacelike case). 
For the R3

2 case we can reverse causality in order to obtain the same results. �
For the case c 	= 0 we have a similar result.

Corollary 5.7. Let c 	= 0 and M be a CMC semi-Riemannian surface isometrically immersed in M
3
s(c) and 

making a constant angle with respect to a closed and conformal vector field Z. Then either

1. M is totally umbilic.
2. M is totally geodesic.
3. M satisfies the following conditions

cεξ > 0, εZ = εT = −εξ, μ2 = 1
3 , λ2 = 4

3 and 〈H, ξ〉2 = 4
3cεξ.

Proof. As before, let us assume first that Z is neither orthogonal nor tangent to M . Thus, if (16) does not 
vanish identically, then y = 〈Z, ξ〉 is a constant, being one of its roots. As a consequence, |Z| is constant 
in M . Then Lemma 2.7 will give rise to a contradiction: if ϕ ≡ 0 then c = 0 by Lemma 2.5; otherwise, 
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Z is orthogonal to M , contradicting our assumption. Alternatively, if Z is orthogonal to M we have that 
M is totally umbilical by Corollary 4.6, whereas, if Z is tangent to M we assert M is totally geodesic by 
Corollary 4.7. Finally, let us observe that the polynomial (16) vanishes precisely when δ = 0 and b = 0
(notice that the constants c and d do not vanish and we can assume μ 	= 0 as well). These latter conditions 
are equivalent to

μ2 = −εZεξ
3 and 〈H, ξ〉2 = 4

3cεξ,

and hence we must have the inequality cεξ > 0. The result follows from the relation (8) in Lemma 3.3. �
Remark 5.8. The above Corollary 5.7 proves that if the mean curvature of the surface is not ±2/

√
3 they 

are either totally umbilic or totally geodesic. In particular, when the surface has zero mean curvature it is 
totally geodesic.

The following result is an immediate consequence of Corollary 5.7:

Corollary 5.9. Let M be a CMC semi-Riemannian surface isometrically immersed in a three dimensional 
space form of non-vanishing curvature and making a constant angle with respect to a closed and conformal 
vector field Z. Then M is totally umbilical or totally geodesic provided any of the following conditions hold:

1. M ⊂ S
3
1(r) is spacelike.

2. M ⊂ H
3
1(r) is timelike.

3. Z and ξ have the same causality.

Proof. If M satisfies (1) or (2) then we have cεξ < 0, whereas if M satisfies (3) then εZ = εξ holds. �
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