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Abstract
Here we analyze a combinatoric exercise and one application to the

theory of ditalgebras.
Mathematics Subject Classification: 05C25, 05E10, 16G99

Keywords: Ditalgebra, indecomposable module

1 Introduction

There are many interactions between several branches of Mathematics, and it
is very common to apply combinatorics to solve problems in algebra.

We review an exercise that we proposed for a mathematical olympiad,
and then we get back to its original setting, an indecomposable object in the
category of modules of a ditalgebra, in order to compute a bound from the

paper [2].
2 The exercise

Proposition 2.1 Let there be n dots in the plane such that there are no
three in the same line. Then draw line segments between pairs of points, such
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that any point is at the end of some of those line segments. Now associate to
each point a positive integer (repetitions are allowed) and compute the product
of the numbers of a pair of points if and only if there is a line segment joining
these points. If s denotes the sum of all the products of above and t denotes
the sum of all the integers associated to the points, then prove that

ns > (n—1)t.

Proof: We proceed by induction on n.

The case n =1 is easy.

Now let be n = 2 and P and @ the points with respective natural numbers
a,b. Then t = a4+ b and s = ab. Since a,b > 1 we get b > % and 2b > 1+%,
and so t5s=2ab>a+b=1t.

Now assume that the claim is true for any set of n € {1,2, ...,k — 1} points
fulfilling the hypothesis and set n = k points as in the statement.

Let x be the biggest of the numbers associated to the points and let P be
a point with number x. Let ) be an adjacent point to P and y the number
associated to Q).

Now we choose a partition {U,V'} of the k points (R will denote a point
different of P and different of Q):

1. PeUand Q € V.

2. If there is not a path of line segments from R to P or to () then we place
Rin V.

3. If there is a path of line segments from R to () such that P is not
contained in that path then we place R in V'; observe that any point in
that path is in V.

4. If any path of line segments from R to () contains P then we place R in
U.

Let be my = |V| and my = |U]| .

Notice that both U and V satisfies the hypothesis if my > 1 and my > 1.

Let be sy the sum of the products for each pair of points in U joined by a
line segment and ¢y the sum of all the numbers associated to points in U. In
a similar way we define sy and ty .

We have to prove that

k(8U+Sv+l'y> Z (k— 1) (tU—l-tv) (1)
By the induction hypothesis we have mysy > (my — 1)ty and mysy >

(my — 1) ty, and so

k k —1 —1
(o by tay) =y (Rt 4+ Mty o+ ay)
k(mU—1)mth+k(mv—1)mUtV+kmUmVa:y
(k—1)mymy ’
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Then it is enough to prove the inequality
k(my — 1) myty + k (my — 1) myty + kmymyzy > (K — 1) mymy (ty + tv),

which is equivalent to prove kmymyzy > my (k —my) ty + my (kK —my) ty.
Since k = my 4+ my the previous inequality is equivalent to

mimyry + mymiry > myty +mity (2)

Recall that x is the biggest number associated to the points, and so ty <
|V]z = myx < myaxy, then it follows m#ty < mZmyzy. In a similar way we
get ty < |U|z = mpz < myzry and mity < mymizy. Adding up this last
inequalities we get (2) and then follows (1). o

Let us observe that in the graph - —-— ... — - where each point has
associated the integer 1, the sum is n and the sum of the products is n — 1.

3 The application

Let k be a field, R = Dy x ... x D,, where n is a natural number and each D,
is a division ring over a finite-dimensional k—algebra, W, and W; are finitely
generated R — R—bimodules.

The definitions of a ditalgebra A and the category of finite-dimensional
A—modules, the last one denoted by A—mod, can be consulted in [1] and [2];
we only need to recall the following facts:

1. A is determined by the tensorial k—algebra T'= Tr (W) = Re W @
WrWo...0We @ ..., where W = Wy @ W;, and a differential
§: T — T (see definition 1.6 of [1]).

2. If M € A — mod then M is an A—module of finite dimension over k
where A is the tensorial k—algebra Tg (Wy) = R@& Wy & Wy @g Wy &
LB WE @ ... (see definition 2.2 and remark 2.5 of [1]).

3. If M is an indecomposable A—module then it has to be an indecompos-
able A—module (see definition 2.2 and remark 2.5 of [1]).

We will denote by e; the idempotent of R given by (0,...,0,1;,0,...,0),
where 1; denotes the identity in D;.

If M is a non-zero A—module then there exists a not empty subset C' =
{71, Jm} C{1,2,...,n} such that e;, M # 0 for each jj, € C.

It is not hard to verify that if M is an indecomposable A—module and C
is as above, then the graph with points in C' and line segments determined by

the non-zero D;, — D; ,—bimodules e;, Wye;,, is connected.
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The ring Ey = End 4 (M) acts in a natural way (see definition 2.3 of [2])
over each e;, M, with j, € C, and so we have a number d;, which is the length
of e;, M as right Ej—module.

By the claims above and the proposition 2.1 we get the following.

Proposition 3.1 Let A be a ditalgebra as above and M € A—mod inde-
composable. Let be C' and dj, as above. Let s be the sum of the products dj,d;,,
where the Dy, — D; ,—bimodule e;, Woe;,, is different of zero.

Then
ms > (m —1) (djh1 +...—|—d]-hm>.

The propositions 2.1 and 3.1 can be used to obtain easily the inequality of
proposition 4.10 of [2].
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