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Copyright c© 2015 Javier Diaz-Vargas, Carlos Jacob Rubio-Barrios and Horacio Tapia-Recillas.

This is an open access article distributed under the Creative Commons Attribution License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the original work

is properly cited.

Abstract

Necessary and sufficient conditions for cubic (quartic) permutation poly-
nomials to be self-invertible over the ring Zpn where p > 7 (p > 17) is a
prime number are given, and completely determined. The characterization of
these permutations are given by relations on the coefficients of the polynomial
which resulted in a Gröbner basis with respect to some lexicographic order of
certain ideals.
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1 Introduction

The Symmetric group Sn, i.e., the group of permutations on n symbols has been one
of the most interesting groups and its applications cover several areas in both “pure”
and “applied” Mathematics. With the advance of information technology the sym-
metric group is of great importance: for example, in the design of symmetric cipher
systems such as the Data Encryption Standard (DES) or the Advanced Encryp-
tion Standard (AES), the Substitution boxes (S-boxes) are permutations; in error
detecting-correcting linear (block) codes permutations are used to describe equiva-
lent codes. A main component in the design of turbo codes is a pair of convolutional
codes and an interleaver between them, which is just a permutation. Since the in-
verse of an interleaver is used in the decoding process, easy and computationally
low cost methods are required to generate permutations, so it would be interesting
to determine self-invertible permutations. One way to determine permutations is
by means of polynomials which have been extensively studied over finite fields ([4]).
For practical purposes in turbo coding, permutations on sets with cardinality 2n,
(e.g. n = 7, 8, 9, 10) are fundamental. In [8] results on interleavers based on per-
mutation polynomials are presented and in [9] results on self-invertible quadratic
permutation polynomials are discussed. Also, the authors undertook the study of
self-invertible permutation polynomials of degree two and three over the ring Zpn of
integers modulo pn for various values of the prime p and the integer n > 1 ([3]). In
this note, necessary and sufficient conditions for a cubic (quartic) polynomial over
the ring Zpn , p > 7, (p > 17) to determine a self-invertible permutation are given.
Furthermore, all of these permutation polynomials are determined. These necessary
and sufficient conditions are given by relations on the coefficients of the polynomials
and it turns out that these relations determine a (strong) Gröbner basis of certain
ideals.

The manuscript is organized as follows: the main result in Section 2 is the
characterization of self-invertible quartic permutation polynomials over the ring Zpn
for p > 13 a prime and n > 1 an integer. In Section 3, using the fact that the ring
Zpn is a finite chain ring, self-invertible cubic (quartic) permutation polynomials are
determined over this ring for p > 7, (p > 17). Finally, in Section 4, after recalling
facts on (strong) Gröbner bases it is shown that relations on the coefficients for a
cubic (quartic) polynomial to be self-invertible determine such bases of some ideals
in the polynomial ring in three (cubic) and four (quartic) variables over Zpn .

2 Self-Invertible Permutation Polynomials over Zpn,
p a prime

Let R 6= 0 be a commutative ring with unity. A polynomial f(x) = a1x + a2x
2 +

· · ·+ adx
d ∈ R[x] with ad 6= 0 is self-invertible if f(f(α)) = α for all α ∈ R.
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The following result generalizes Theorem 3.2 of [3].

Theorem 2.1. Let n ≥ 1 be an integer, f(x) = a1x+a2x
2+ · · ·+adx

d ∈ Zpn [x] with
d ≥ 3, ad 6= 0, and p be a prime such that p > d2 − 1. Then, f(x) is self-invertible
if and only if the coefficients of g(x) = f(f(x))− x are all equal to 0.

Proof. Suppose that f(x) is self-invertible. Then, g(a) = 0 for all a ∈ Zpn . In
particular, g(u) = 0 for all u = 1, 2, . . . , d2, each one a unit in Zpn since p > d2 − 1.
Then,

g(u) · u−1 = 0 for all u = 1, 2, . . . , d2. (1)

Let V (x1, x2, . . . , xd2) be the d2 × d2 Vandermonde matrix in the indeterminates
x1, x2, . . . , xd2 and let ∆ = V (1, 2, . . . , d2) where 1, 2, . . . , d2 ∈ Zpn . For an integer
m ∈ {1, 2, . . . , d2} let m! = m(m − 1) · · · 2 · 1 (the product taken in the ring Zpn).
It is easy to see that the determinant of ∆ is

∏
1≤i<j≤d2

(j − i) =
d2−1∏
i=1

k!,

which is a unit in the ring Zpn , and therefore ∆ is invertible. Let α = (α1, . . . , αd2),
where α1, . . . , αd2 are the coefficients of g(x). From relation (1) the linear system

∆αt = 0,

has only the trivial solution since the matrix ∆ is invertible, proving the claim. The
converse is clear.

If f(x) = ax+ bx2 + cx3 + dx4 ∈ R[x] is a quartic permutation polynomial, it is
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easily seen that the coefficients of g(x) = f(f(x))− x are:

α1 = a2 − 1, (2)

α2 = ab(1 + a), (3)

α3 = a(a2c+ 2b2 + c), (4)

α4 = ad+ 3ca2b+ 2abc+ b3 + a4d, (5)

α5 = 4da3b+ 3a2c2 + 2bad+ 3cab2 + 2b2c, (6)

α6 = 6abc2 + cb3 + 3ca2d+ bc2 + 6da2b2 + 2b2d+ 4da3c, (7)

α7 = 4a3d2 + 2bcd+ 4dab3 + 12da2bc+ 3b2c2 + 6cabd+ 3ac3, (8)

α8 = 6ac2d+ 3bc3 + bd2 + 3cb2d+ db4 + 12dab2c+ 12a2bd2 + 6da2c2, (9)

α9 = 12a2cd2 + c4 + 3cad2 + 6bc2d+ 12dabc2 + 4db3c+ 12ab2d2, (10)

α10 = 24abcd2 + 6db2c2 + 4dac3 + 3c3d+ 3cbd2 + 6a2d3 + 4b3d2, (11)

α11 = 4dbc3 + 12ac2d2 + 3c2d2 + 12abd3 + 12b2cd2, (12)

α12 = dc4 + 6b2d3 + cd3 + 12bc2d2 + 12acd3, (13)

α13 = 4c3d2 + 12bcd3 + 4ad4, (14)

α14 = 4bd4 + 6c2d3, (15)

α15 = 4cd4, (16)

α16 = d5. (17)

Theorem 2.2. Let R be a commutative ring with unity, f(x) = ax+bx2 +cx3 +dx4

a quartic polynomial over R and assume that 2, 3 and 5 are units in R. Then,
relations (2) to (17) are all zero if and only if

a2 − 1 = b(1 + a) = b2 + c = 2b4 − 3bd = 4d2 + 3b3d = 17bd2 = b2d2 = d3 = 0.

Proof. Suppose that relations (2) to (17) are all zero. Relation (2) states that a2 = 1
and hence a is a unit. Thus, from relations (3) and (4) it follows that b = −ab and
c = −b2. Substituting these new relations in a2, b and c, in relations (5) to (17) the
following set of relations are obtained:
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0 = d(1 + a)

0 = 4b4 − 6bd

0 = 6b5 − 9b2d = 2−1 · 3b(4b4 − 6bd)

0 = 6b6 − 12b3d− 4d2 = 2−1 · 3b2(4b4 − 6bd)− 4d2 − 3b3d

0 = −3b7 + 10b4d+ 13bd2 = −2−2(3b3 − 2−1 · 11d)(4b4 − 6bd) + 2−2 · 85bd2

0 = b8 − 10b5d− 21b2d2 = 2−3(2b4 − 17bd)(4b4 − 6bd)− 2−2 · 135b2d2

0 = 7b6d+ 25b3d2 + 6d3 = 2−2 · 7b2d(4b4 − 6bd) + 2−1 · d2(71b3 + 12d)

0 = −4b7d− 21b4d2 − 12bd3 = −2−2(4b3d+ 27d2)(4b4 − 6bd)− 2−1 · 105bd3

0 = b8d+ 12b5d2 + 17b2d3 = 2−3(2b4d+ 27bd2)(4b4 − 6bd) + 2−2 · 149b2d3

0 = −4b6d2 − 12b3d3 − 4d4 = −b2d2(4b4 − 6bd)− 18b3d3 − 4d4

0 = 6b4d3 + 4bd4 = 2−1 · 3d3(4b4 − 6bd) + 13bd4

0 = −4b2d4

0 = d5

From relation (4) of this set of relations, 4d2 + 3b3d = 0. Multiplying this last
relation by d and since b2d2 = 0 from relation (6), it follows that 4d3 = 0 and since
2 is a unit in the ring, d3 = 0. The converse is straightforward.

The following result gives a characterization for a quartic permutation polyno-
mial over the ring Zpn for primes p > 13 to be self-invertible .

Theorem 2.3. Let n ≥ 1 be an integer, p > 13 a prime and f(x) = ax + bx2 +
cx3 + dx4 a quartic permutation polynomial over Zpn. Then, f(x) is self-invertible
if and only if

a+ 1 = b2 + c = 2b4 − 3bd = 4d2 + 3b3d = 17bd2 = b2d2 = d3 = 0.

Proof. If f(x) is self-invertible, Theorem 2.1 implies that the coefficients αi, i =
1, . . . , 16, of g(x) are all equal to zero (since p > 42 − 1), and by Theorem 2.2,

a2 − 1 = b(1 + a) = b2 + c = 2b4 − 3bd = 4d2 + 3b3d = 17bd2 = b2d2 = d3 = 0.

Since Zpn is a local ring, it does not have nontrivial idempotents (distinct from 0
and 1), and since the characteristic of Zpn is not a power of 2, the condition a2 = 1
implies that the idempotents are of the form 2−1(1 + a) (see Theorem VII.7 and
Exercise VII.12 of [5]). Therefore, a = −1 or a = 1. If a = 1 then b(1 + a) = 2b = 0
and hence b = 0. Thus, from relation (5) we have α4 = 2d = 0 and then d = 0 which
is a contradiction since the degree of f(x) is 4. Then a = −1 or a+ 1 = 0.

Conversely, if relation on the statement of the Theorem hold, then a2 − 1 =
b(1 + a) = b2 + c = 2b4 − 3bd = 4d2 + 3b3d = 17bd2 = b2d2 = d3 = 0, and
from Theorem 2.2 it follows that all coefficients of f(f(x)) − x are zero. Finally,
Theorem 2.1 implies that f(x) is self-invertible.
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Remark 2.4. In Corollary 3.4 of [3] it was shown that for primes p > 7, a cubic
permutation polynomial f(x) = ax+ bx2 + cx3 ∈ Zpn [x] is self-invertible if and only
if

a2 − 1 = b(1 + a) = b2 + c = c2 = 0.

However, as in Theorem 2.3, the condition a2 − 1 = 0 is also equivalent to the
condition a + 1 = 0. Indeed, since Zpn is a local ring whose characteristic is not a
power of 2 and a is an involution, it follows that a = 1 or a = −1 (Theorem VII.7
and Exercise VII.12 of [5]). If a = 1, then b(1 + a) = 2b = 0 which implies that
b = 0 and from b2 + c = 0 we obtain c = 0 which is a contradiction. Thus, a = −1.
Conversely, if a+ 1 = 0 it follows immediately that a2 − 1 = (a+ 1)(a− 1) = 0.

Therefore, f(x) is self-invertible if and only if a+ 1 = b2 + c = c2 = 0.

3 Description of Cubic (Quartic) Self-invertible

Permutation Polynomials over Zpn for primes

p > 7 (p > 17),

Before giving a description of cubic and quartic self-invertible permutation polyno-
mials over Zpn for some primes p, recall that a chain ring is a ring whose ideals
are linearly ordered by inclusion. A chain ring with finitely many ideals is called a
finite-chain ring. For example, the ring Zpn is a finite-chain ring for any prime p
and any positive integer n, since any ideal is of the form 〈pi〉 for i = 0, 1, . . . , n, and
the lattice of these ideals is such that

Zpn = 〈1〉 ⊃ 〈p〉 ⊃ · · · ⊃ 〈pn−1〉 ⊃ 〈pn〉 = 0.

The following well-known properties of a finite-chain ring ([6]) will be needed
later.

Theorem 3.1. Let A be a finite-chain ring. Then

1. A is a principal ideal ring.

2. A is a local ring with maximal ideal M .

3. The elements of M are nilpotent and the elements of A \M are units.

4. If γ is a fixed generator of M and ν is the nilpotency index of γ i.e. the
smallest positive integer for which γν = 0, then

(a) the distinct proper ideals of A are 〈γi〉A, i = 1, . . . , ν − 1,

(b) for any element a ∈ A \ {0} there is a unique i and a unit u ∈ A such
that a = uγi where 0 ≤ i ≤ ν − 1 and u is unique modulo γν−i.
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The next result determines all self-invertible cubic permutation polynomials.

Theorem 3.2. Let n ≥ 1 be an integer and p > 7 be a prime. The self-invertible
cubic permutation polynomials over Zpn are of the form

f(x) = −x+ upkx2 + vp2kx3

where k is an integer such that n
4
≤ k < n

2
, and u, v are units in Zpn such that pn−2k

divides (u2 + v).

Proof. Let f(x) = ax+ bx2 + cx3 be a self-invertible cubic permutation polynomial
over Zpn . Since c 6= 0, from Theorem 3.1, c = vpl with 0 ≤ l < n and v a unit. On
the other hand, by Remark 2.4, a = −1 and b2 + c = 0. Thus, if b = 0 relation
b2 + c = 0 implies that c = 0 which is a contradiction. Therefore b 6= 0 and from
Theorem 3.1, b = upk with 0 ≤ k < n and u a unit. Hence

0 = b2 + c = u2p2k + vpl.

If l < 2k then pl(u2p2k−l + v) = 0 and u2p2k−l + v is a unit. Then pl = 0, therefore
c = 0 which is a contradiction.
If l > 2k then p2k(u2 + vpl−2k) = 0 and u2 + vpl−2k is a unit. Then p2k = 0 and then
b2 = 0. It follows that c = 0 which is a contradiction.
Hence l = 2k < n and 0 = p2k(u2 + v) implies that pn−2k | (u2 + v). Also, from
Remark 2.4, 0 = c2 = v2p2l which implies that 2l ≥ n, and therefore k ≥ n

4
.

Conversely, if a = −1, b = upk and c = vp2k where n
4
≤ k < n

2
and u, v are units such

that pn−2k | (u2 + v), then it is straightforward to see that a+ 1 = b2 + c = c2 = 0,
and the result follows from Remark 2.4.

Theorem 3.3. Let n ≥ 1 be an integer and p > 17 a prime. The self-invertible
quartic permutation polynomials f(x) = ax+bx2+cx3+dx4 over Zpn are as follows:

1. If c = 0, f(x) = −x + upkx2 + wpmx4 where n
2
≤ k ≤ n, n

2
≤ m < n, and u,

w are units.

2. If c 6= 0, f(x) = −x + upkx2 + vp2kx3 + wpmx4 where k < n
2
, u, v and w are

units such that pn−2k divides (u2 + v), m < n, and

(a) If m < 3k, then f(x) is self-invertible if and only if k + m ≥ n and
m ≥ n

2
.

(b) If m = 3k, then f(x) is self-invertible if and only if n
6
≤ k < n

4
and

pn−4k | (2u2 − 3w), or k ≥ n
4
.

(c) If m > 3k, then f(x) is self-invertible if and only if k ≥ n
4
.

Proof. Let f(x) = ax + bx2 + cx3 + dx4 be a quartic permutation polynomial over
Zpn , p > 17. Then, d 6= 0 and Proposition 3.1 implies that d = wpm with 0 ≤ m < n
and w a unit.
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1. c = 0. Suppose that f(x) is self-invertible. Theorem 2.3 implies that a = −1,
b2 + c = 0 and 4d2 + 3b3d = 0. Since c = 0, b2 = 0 and so d2 = 0. From
0 = d2 = w2p2m it follows that 2m ≥ n and so n

2
≤ m < n. If b = 0, then

f(x) = −x + wpmx4. If b 6= 0, b = upk where 0 ≤ k < n and u a unit, by
Theorem 3.1. Now, from 0 = b2 = u2p2k, 2k ≥ n and therefore n

2
≤ k < n.

Conversely, if f(x) = −x + upkx2 + wpmx4 where n
2
≤ k ≤ n, n

2
≤ m < n,

and u, w are units, it follows that a = −1, b = upk and d = wpm. Thus
b2 + c = b2 = u2p2k = 0 since 2k ≥ n; 2b4 − 3bd = −3bd = −3uwpk+m = 0
since k+m ≥ n

2
+ n

2
= n; 4d2 + 3b3d = 4d2 = 4w2p2m = 0 since 2m ≥ n. Since

4 - p, it follows that d2 = 0 and hence 17bd2 = 0, b2d2 = 0 and d3 = 0. The
claim follows from Theorem 2.3.

2. c 6= 0. Suppose that f(x) is self-invertible. Then by Theorem 2.3 we have
that a = −1 and b2 + c = 0. Since c 6= 0, b 6= 0. Then, by Proposition 3.1
we can write b = upk, c = vpl for some units u, v and integers k, l such that
0 ≤ k < n and 0 ≤ l < n. Thus,

0 = b2 + c = u2p2k + vpl. (18)

If 2k < l, then 0 = p2k(u2 + vpl−2k) with u2 + vpl−2k a unit. Hence, 2k ≥ n
and therefore b2 = 0 which is a contradiction since c 6= 0.
If 2k > l, then 0 = pl(u2p2k−l + v) with u2p2k−l + v a unit. Hence, l ≥ n and
therefore c = vpl = 0, a contradiction.
Therefore, 2k = l and so k < n

2
. Putting l = 2k in relation (18) we obtain

0 = p2k(u2 + v) which implies that pn−2k divides (u2 + v) since 2k < n.

(a) Suppose that m < 3k. Since f(x) is self-invertible, by Theorem 2.3,
2b4−3bd = 0 and then 2u4p4k−3uwpk+m = 0. Since m < 3k, k+m < 4k
and hence pk+m(2u4p3k−m − 3uw) = 0 with 2u4p3k−m − 3uw a unit. It
follows that k+m ≥ n. On the other hand from Theorem 2.3, 4d2+3b3d =
0 and then, 0 = 4w2p2m + 3u3wp3k+m = wp2m(4w + 3u3p3k−m) with
4w + 3u3p3k−m a unit since m < 3k. It follows that 2m ≥ n and hence
m ≥ n

2
.

(b) Suppose that m = 3k. Since f(x) is self-invertible, from Theorem 2.3
we have 0 = 2b4 − 3bd = up4k(2u3 − 3w). If 4k < n, then pn−4k divides
(2u3 − 3w). But from Theorem 2.3, 0 = 4d2 + 3b3d = p6kw(4w + 3u3).
Suppose that 6k < n. Then p divides (2u3−3w), p divides (4w+3u3) and
hence p divides −3(2u3−3w)+2(4w+3u3) = 17w which is a contradiction
since p > 17 and w is a unit. Therefore, 6k ≥ n.

(c) Suppose that m > 3k. Since f(x) is self-invertible, from Theorem 2.3,
2b4− 3bd = 0. Then 0 = up4k(2u3− 3wpm−3k) with 2u3− 3wpm−3k a unit
since m > 3k. Therefore, 4k ≥ n which is equivalent to k ≥ n

4
and so

m > 3n
4

.
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Conversely, suppose that f(x) = −x+upkx2+vp2kx3+wpmx4 where k < n
2
, u,

v and w are units such that pn−2k divides (u2 + v) and m < n. Then, a = −1,
b = upk, c = vp2k, d = wpm, and therefore b2 + c = p2k(u2 + v) = 0.

(a) If m < 3k, k + m ≥ n and n
2
≤ m < n. Then n ≤ k + m < 4k. It

is straightforward to see that all relations in Theorem 2.3 are satisfied,
which implies that f(x) is self-invertible.

(b) If m = 3k, n
6
≤ k < n

4
and pn−4k | (2u3 − 3w). Then, m ≥ n

2
. A direct

calculation shows that all relations of Theorem 2.3 are satisfied, and hence
f(x) is self-invertible.

(c) If m > 3k and n
4
≤ k < n

2
. Then 3n

4
< m. Again, it is easy to see that all

relations of Theorem 2.3 are satisfied, and therefore f(x) is self-invertible.

4 A relation with Strong Gröbner Bases

Some results will be presented on Gröbner bases associated to self-invertible cubic
and quartic permutation polynomials discussed in Section 2. In order to prove these
results we first recall some facts on Gröbner bases.

Throughout this section, R will denote a (commutative) principal ideal ring. The
monoid of terms in x1, . . . , xn is denoted by T . We fix an admissible order “<” on
T . If f =

∑
t∈T ftt ∈ R[x1, . . . , xn] \ {0} and v = max{t ∈ T | ft 6= 0} then v

is called the leading term, fv the leading coefficient and fvv the leading monomial
of f , denoted lt(f), lc(f) and lm(f) respectively. If S ⊂ R[x1, . . . , xn] \ {0}, we
write lm(S) for {lm(g) | g ∈ S}, and similarly for lc(S) and lt(S). Note that the
terminology “leading term”, “leading monomial”, etc. differs from [1].

Let us recall the definition of a G-polynomial (see [2]).

Definition 4.1. Let F = {f1, . . . , fk} ⊂ R[x1, . . . , xn] \ {0}. A G-polynomial of
F is any polynomial

∑k
i=1 citifi where

∑k
i=1 cilc(fi) ∈ gcd(lc(F )), ci ∈ R and ti =

lcm(lt(F ))

lt(fi)
. We write Gpol(f) or Gpol(f1, . . . , fk) for the set of G-polynomials of

{f1, . . . , fk}.

In [6] the following result (Lemma 5.7) was stated.

Let F = {f1, . . . , fk}, F ′ = {f ′1, . . . , f ′k′} be subsets of R[x1, . . . , xn] \ {0} and let
h ∈ Gpol(F ), h′ ∈ Gpol(F ′). Then

1. Gpol(h, h′) = Gpol(F ∪ F ′).
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2. If k = k′ and lm(fi) | lm(f ′i) for i = 1, . . . , k, then lm(h) | lm(h′).

However, condition 1 is not true as the following example due to Eva Zerz shows
([10]). Consider F = F ′ = {x + 1, y + 1} in Z[x, y], and h = h′ = xy + x. Then,
Gpol(h) consists only of h and −h, but Gpol(F ) contains all the polynomials of the
form ay(x+ 1) + (1− a)x(y + 1) where a ∈ Z; in particular it also contains xy + y.

This example shows that in general Gpol(F ∪ F ′) 6⊂ Gpol(h, h′). Next we prove
that Gpol(h, h′) ⊂ Gpol(F ∪F ′) and lm(Gpol(h, h′)) = lm(Gpol(F ∪F ′)) which was
pointed out to Ana Sălăgean by Eva Zerz ([7]). First we recall the definitions of
Gpol-closed and Gpol-closure given in [6].

Definition 4.2. Let G be a finite non-empty subset of R[x1, . . . , xn] \ {0}. We say
that

1. G is Gpol-closed if for all gi, g2 ∈ G with g1 6= g2, there is an h ∈ Gpol(g1, g2)
which is strongly reducible wrt. G.

2. G is a Gpol-closure of G′ ⊆ G if G is Gpol-closed and

G ⊆
⋃

∅6=F ′⊆G′

Gpol(F ′). (19)

Lemma 4.3. Let F = {f1, . . . , fk}, F ′ = {f ′1, . . . , f ′k′} be subsets of R[x1, . . . , xn] \
{0} and let h1 ∈ Gpol(F ), h2 ∈ Gpol(F ′). Then

1. Gpol(h1, h2) ⊂ Gpol(F ∪ F ′) and lm(Gpol(h1, h2)) = lm(Gpol(F ∪ F ′)).

2. If k = k′ and lm(fi) divides lm(f ′i) for i = 1, . . . , k, then lm(h1) divides lm(h2).

Proof. 1. Let g ∈ Gpol(h1, h2). Then g = c1t1h1 + c2t2h2 where h1 ∈ Gpol(F ),

h2 ∈ Gpol(F ′), ti = lcm(lt(h1),lt(h2))
lt(hi)

, i = 1, 2, and c1lc(h1) + c2lc(h2) ∈
gcd(lc(h1), lc(h2)).

Since h1 ∈ Gpol(F ) and h2 ∈ Gpol(F ′), we have h1 =
∑k

i=1 disifi, h2 =∑k′

j=1 d
′
js
′
jf
′
j where

∑k
i=1 dilc(fi) ∈ gcd(lc(F )),

∑k′

j=1 d
′
jlc(f

′
j) ∈ gcd(lc(F ′)),

si = lcm(lt(F ))

lt(fi)
for i = 1, . . . , k and s′j = lcm(lt(F ′))

lt(f ′j)
for j = 1, . . . , k′. Then

g = c1

k∑
i=1

dit1sifi + c2

k′∑
j=1

d′jt2s
′
jf
′
j.
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Now we show that t1si = lcm(lt(F∪F ′))

lt(fi)
for i = 1, . . . , k and t2s

′
j = lcm(lt(F∪F ′))

lt(f ′j)
for j = 1, . . . , k′. Indeed, since lt(sifi) = lcm(lt(F )) and lt(s′jf

′
j) = lcm(lt(F ′))

we have lm(h1) = lc(h1) · lcm(lt(F )) and lm(h2) = lc(h2) · lcm(lt(F ′)) where

lc(h1) =
k∑
i=1

dilc(fi) and lc(h2) =
k′∑
j=1

d′jlc(f
′
j).

Then lt(h1) = lcm(lt(F )), lt(h2) = lcm(lt(F ′)) and

t1si =
lcm(lt(h1), lt(h2))

lt(h1)
· lcm(lt(F ))

lt(fi)

=
lcm(lcm(lt(F )), lcm(lt(F ′)))

lcm(lt(F ))
· lcm(lt(F ))

lt(fi)

=
lcm(lt(F ∪ F ′))

lt(fi)

for i = 1, . . . , k. Similarly we obtain t2s
′
j = lcm(lt(F∪F ′))

lt(f ′j)
for j = 1, . . . , k′.

On the other hand it is clear that c1lc(h1) + c2lc(h2) ∈ gcd(lc(F ∪ F ′)) and
therefore g ∈ Gpol(F ∪F ′). Thus Gpol(h1, h2) ⊂ Gpol(F ∪F ′). In particular,
lm(Gpol(h1, h2)) ⊂ lm(Gpol(F ∪ F ′)). Conversely, let f ∈ lm(Gpol(F ∪ F ′)).
Then f =

∑k
i=1 citifi +

∑k′

j=1 c
′
jt
′
jf
′
j where

lm(f) =

(
k∑
i=1

cilc(fi) +
k′∑
j=1

c′jlc(f ′j)

)
· lcm(lt(F ∪ F ′)).

We must find c∗1, c
∗
2 ∈ R such that

lm(f) = (c∗1lc(h1) + c∗2lc(h2)) · lcm(lt(h1), lt(h2)),

or

c∗1

k∑
i=1

dilc(fi) + c∗2

k′∑
j=1

d′jlc(f
′
j) =

k∑
i=1

cilc(fi) +
k′∑
j=1

c′jlc(f
′
j)

since lt(h1) = lcm(lt(F )) and lt(h2) = lcm(lt(F ′)).

Let C =
∑k

i=1 cilc(fi) +
∑k′

j=1 c
′
jlc(f

′
j). We know that C ∈ gcd(lc(F ∪ F ′)),

lc(h1) ∈ gcd(lc(F )) and lc(h2) ∈ gcd(lc(F ′)). Let D ∈ gcd(lc(h1), lc(h2)).
Then 〈C〉R = 〈D〉R and therefore C = uD for some unit u ∈ R by Proposition
4.1 of [6]. Now if g = c∗1s1h1 + c∗2s2h2 then ug = u(c∗1s1h1 + c∗2s2h2) and
lc(u−1g) = uc∗1lc(h1) +uc∗2lc(h2) = uD which implies that lm(Gpol(F ∪F ′)) ⊂
lm(Gpol(h1, h2)).
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2. Suppose that k = k′ and lm(fi) | lm(f ′i) for all i = 1, . . . , k. Since lm(fi) =
lc(fi)lt(fi) and lm(f ′i) = lc(f ′i)lt(f

′
i) there exists di ∈ R such that lc(f ′i)lt(f

′
i) =

dilc(fi)lt(fi) for all i = 1, . . . , k. Hence, lc(fi) | lc(f ′i) and lt(fi) | lt(f ′i) for all
i = 1, . . . , k.
As lm(h1) = lc(h1)lcm(lt(F )) and lm(h2) = lc(h2)lcm(lt(F ′)), it follows that
lcm(lt(F )) | lcm(lt(F ′)). Similarly, lc(h1) | lc(h2) since lc(h1) ∈ gcd(lc(F ))
and lc(h2) ∈ gcd(lc(F ′)). Thus, lm(h1) | lm(h2).

The other results in [6] still hold but the proof of Proposition 5.8 requires revision.
We recall the definitions of reduction and strong reduction.

Definition 4.4. Let A be a commutative ring with 1 6= 0. Let f ∈ A[x1, . . . , xn]\{0}
and let G be a finite, non-empty subset of A[x1, . . . , xn] \ {0}.

1. We say that f reduces to h with respect to G in one step (and that f is reducible
with respect to G) if h = f −

∑k
i=1 citigi, where ci ∈ A, ti ∈ T , gi ∈ G,

lm(f) =
∑k

i=1 citilm(gi) and ci 6= 0 implies cilc(gi) 6= 0 and lt(f) = tilt(gi).
We write this as f →G h.

2. We say that f strongly reduces to h wrt. G in one step (and that f is strongly
reducible wrt. G) if h = f −mg where g ∈ G and m is a monomial such that
lm(f) = m · lm(g). We write this as f �G h.

3. The reflexive and transitive closures of the relations →G and �G are denoted
→∗G and �∗G respectively. When f →∗G h we say that f reduces to h wrt. G.
Similarly for the strong reduction.

Proposition 4.5. Let G,G′ ⊂ R[x1, . . . , xn] \ {0} be finite sets satisfying condi-
tion (19). The following assertions are equivalent:

1. G is a Gpol-closure of G′.

2. For all non-empty F ′ ⊆ G′, there is an h ∈ Gpol(F ′) which is strongly reducible
wrt. G.

3. For all non-empty F ′ ⊆ G′ such that lt(F ′) is saturated wrt. lt(G′), there is
an h ∈ Gpol(F ′) which is strongly reducible wrt. G.

4. For all f ∈ R[x1, . . . , xn], f is reducible wrt. G′ if and only if f is strongly
reducible wrt. G.

Proof. We need only change the proof of (2) ⇒ (1). The rest of the proof is the
same given in Proposition 5.8 of [6].
We need only show that G is Gpol-closed, so let h1, h2 ∈ G with h1 6= h2. From
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condition (19), there are F ′′, F ′ ⊆ G′ such that h1 ∈ Gpol(F ′) and h2 ∈ Gpol(F ′′).
By (2), there is an h ∈ Gpol(F ′ ∪ F ′′) which is strongly reducible wrt. G. Suppose
that h strongly reduces to h′ wrt. G in one step, say h′ = h −mg for some g ∈ G
and m is a monomial such that lm(h) = m · lm(g). By Lemma 4.3, lm(h) = lm(f)
for some f ∈ Gpol(h1, h2). Then f strongly reduces to f ′ = f −mg wrt. G in one
step and therefore f is strongly reducible wrt. G.

It should be noted that with the modification in Lemma 4.3 the claims of Propo-
sition 5.10 and its consequences, particularly Corollary 5.13 of [6] still hold.

We end this note by giving a relationship between Gröbner bases and the equa-
tions on the coefficients of quartic and cubic permutation polynomials given in The-
orem 2.3 and Remark 2.4 respectively, which characterize when these polynomials
are self-invertible. Before to state these claims we recall the following concepts.

Definition 4.6.

1. Let g1, g2 ∈ R[x1, ..., xn] be non-zero distinct polynomials. An S-polynomial of
g1 and g2 is any polynomial c1t1g1 − c2t2g2 where,

c1lc(g1)− c2lc(g2) ∈ lcm(lc(g1), lc(g2)) 6= {0}

ci ∈ R and ti = lcm(lt(g1), lt(g2))/lt(gi). The set of all S-polynomials of g1, g2
will be denoted by Spol(g1, g2).

2. An A-polynomial of 0 6= g ∈ R[x1, ..., xn] is any polynomial of the form ag
where a ∈ R is such that 〈a〉R = Ann(lc(g)). The set of all A-polynomials of
g will be denoted by Apol(g).

Theorem 4.7. Let p be a prime and n be a positive integer. The set

G = {a+ 1, b2 + c, c2}

is a strong Gröbner basis for the ideal I = 〈G〉 in Zpn [a, b, c] with the lexicographic
order b > c > a.

Proof. Since the ring Zn is a finite-chain ring, we may apply Corollary 5.13 of [6].
We must show that
(A) for any g1, g2 ∈ G with g1 6= g2, there is an h ∈ Spol(g1, g2) such that h �∗G 0
and;
(B) for any g ∈ G there is an h ∈ Apol(g) such that h�∗G 0.
In order to check condition (A), from the definition of S-polynomial, given g1, g2 ∈ G
we have to find an h of the form c1t1g1 − c2t2g2 such that c1lc(g1) = c2lc(g2) ∈
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lcm(lc(g1), lc(g2)) 6= {0} where ci ∈ Zpn and ti = lcm(lt(g1),lt(g2))
lt(gi)

for i = 1, 2. Also

we need to show that h�∗G 0.
If g1 = a + 1 and g2 = b2 + c, then lcm(a, b2) = ab2, t1 = b2 and t2 = a. Hence,
h = b2(a+ 1)− a(b2 + c) = b2 − ac�G −c(a+ 1) �G 0, that is h�∗G 0.
If g1 = a + 1 and g2 = c2, then lcm(a, c2) = ac2, t1 = c2 and t2 = a. Hence,
h = c2(a+ 1)− a(c2) = c2 �∗G 0.
If g1 = b2 + c and g2 = c2, then lcm(b2, c2) = b2c2, t1 = c2 and t2 = b2. Hence,
h = c2(b2 + c)− b2(c2) = c3 �∗G 0.
In all cases above it is clear that c1lc(g1) = c2lc(g2) ∈ lcm(lc(g1), lc(g2)) 6= {0}.
Now, condition (B) is easy to check. This completes the proof.

Theorem 4.8. Let p > 3 be a prime and n be a positive integer. The set

G = {a+ 1, c+ b2, 2b4 − 3bd, 3b3d+ 4d2, 17bd2, b2d2, d3}

is a strong Gröbner basis for the ideal I = 〈G〉 in Zpn [a, b, c, d] with the lexicographic
order c > b > d > a.

Proof. As in the proof of Theorem 4.7 we must verify the following two conditions.
(A) for any g1, g2 ∈ G with g1 6= g2, there is an h ∈ Spol(g1, g2) such that h �∗G 0
and;
(B) for any g ∈ G there is an h ∈ Apol(g) such that h�∗G 0.
Since we have to verify condition (A) for 21 distinct pairs of elements of G, we
simply check it for some pairs and the rest can be checked in a similar way.
Given g1, g2 ∈ G we have to find an h of the form c1t1g1−c2t2g2 such that c1lc(g1) =

c2lc(g2) ∈ lcm(lc(g1), lc(g2)) 6= {0} where ci ∈ Zpn and ti = lcm(lt(g1),lt(g2))
lt(gi)

for

i = 1, 2. Also we need to show that h�∗G 0.
Let’s consider the elements g1 = 2b4− 3bd and g2 = 3b3d+ 4d2. Since lcm(b4, b3d) =
b4d we have that t1 = d and t2 = b. Thus, putting h = 3d(2b4−3bd)−2b(3b3d+4d2) =
−9bd2 − 8bd2 = −17bd2 it follows that h strongly reduces to 0 wrt. G in one step
and therefore h�∗G 0.
Now if, for example, g1 = c + b2 and g2 = 2b4 − 3bd, then lcm(c, b4) = cb4, t1 = b4

and t2 = c. Thus, h = 2b4(c+ b2)− c(2b4 − 3bd) = 3cbd+ 2b6 strongly reduces to 0
wrt. G since h�G 2b6 − 3b3d�G 0.
As a final example, suppose that g1 = c+b2 and g2 = 3b3d+4d2. Then, lcm(c, b3d) =
cb3d, t1 = b3d and t2 = c. Thus, h = 3b3d(c + b2) − c(3b3d + 4d2) = −4cd2 + 3b5d
strongly reduces to 0 wrt. G since h�G 3b5d+ 4b2d2 �G (4 + 9 · 2−1)b2d2 �G 0.
Observe that in the previous examples the condition

c1lc(g1) = c2lc(g2) ∈ lcm(lc(g1), lc(g2)) 6= {0}

is satisfied.
Now, condition (B) is easy to check and the proof is completed.
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