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We consider a family of periodic SEIRS epidemic models with a fairly general incidence rate of the form 𝑆𝑓(𝐼), and it is shown
that the basic reproduction number determines the global dynamics of the models and it is a threshold parameter for persistence
of disease. Numerical simulations are performed using a nonlinear incidence rate to estimate the basic reproduction number and
illustrate our analytical findings.

1. Introduction

Epidemiological models in mathematics have been recog-
nized as valuable tools in analyzing the dynamics of an
infectious disease nowadays. They are used to describe the
spread of disease and also to make control measures known
to avoid its persistence, for example, via vaccination terms or
treatment terms. These models consider the total population
divided into compartments, given by the biological assump-
tions on the model and represented by functions depending
on time 𝑡. The most common categories used are susceptible
(𝑆), infected (𝐼), recovered (𝑅), exposed (𝐸), quarantined (𝑄),
and vaccinated (𝑉), and the dynamics of model is given by
transmission rates from a compartment to another. We have
then indicated that the models could be of type 𝑆𝐼𝑅, 𝑆𝐼𝑅𝑆,𝑆𝐸𝐼𝑅, 𝑆𝐸𝐼𝑅𝑆, 𝑆𝐸𝐼𝑉𝑅, 𝑆𝐸𝐼𝑄𝑉, and so forth.

To ensure that the model can give a justified qualitative
description of the disease, the choice of the incidence rate
plays an important role. An incidence rate is defined as the
number of new health related events or cases of a disease
in a population exposed to the risk in a given time period.
Some examples are the bilinear incidence rate, the saturated
incidence rate, or a general incidence rate. The bilinear
incidence rate has been repeatedly used by several authors.
It is given by 𝛽𝑆𝐼, where 𝛽 is the transmission rate and
the product 𝑆𝐼 represents the contact between infected and
susceptible individuals (based on the law of mass action).

It was introduced by Kermack and McKendrick [1] in 1927,
and even when it is mathematically simple to use, it faces
multiple problems and challenges when it is used to describe
disease propagation among gregarious animals or persons
[2], because it goes to infinity when 𝐼 becomes larger. In order
to improve the modelling process to study the dynamics of
infection among a large population, Capasso and Serio [3]
in 1978 introduced a saturated incidence rate by studying
the Cholera epidemic spread in Bari, given by 𝛽𝑆𝐼/(1 + 𝑘𝐼),
where𝛽 is the transmission rate and 𝑘 the saturation constant.
Unlike the bilinear incidence, saturated incidence does not
grow up without a limit, but it goes to a saturation limit
as 𝐼 goes to infinity. Multiple types of saturated incidence
have been used in the literature; see, for example, [2] for a
list of them. To avoid the use of a single incidence function,
the use of a general incidence rate that includes a family of
particular functions with similar properties has become a
topic of interest by several authors (see, e.g., [4–8]).

The basic reproduction (represented byR0) is defined as
“the average number of secondary cases produced by a single
infected case when it is introduced in a susceptible popu-
lation” and it has an important role in the study of disease
transmission. In biological terms, usually when this number
is less than one, the disease is eradicated from population,
but when it is greater than one, the infection persists. Mathe-
matically, it is of interest to compute a threshold parameter
with the properties of the basic reproduction number. A
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method to compute this number for certain compartmental
disease models is via the next-generation matrix method
developed in [9]; however, it is not useful when the model
presents time periodic seasonal terms. Authors like [10, 11]
have defined its basic reproduction number for periodic
models as an average, to give some results about extinction or
persistence of infection. However Bacaër and Guernaouni in
[12] introduced the definition of basic reproduction number
for periodic environments, and, later, Wang and Zhao [13]
made a formal definition of it, via the monodromy matrix.

In the present work, we focus on a family of SEIRS epi-
demic models with a time periodic seasonal term, improving
themodel ofMoneim andGreenhalgh in [14], by introducing
an incidence rate with a general function taken from [4] and
the references therein.

We propose the following SEIRS model:𝑑𝑆𝑑𝑡 = 𝜇𝑁 (1 − 𝑝) − 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝑟 (𝑡)) 𝑆 + 𝛿𝑅𝑑𝐸𝑑𝑡 = 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝜎) 𝐸𝑑𝐼𝑑𝑡 = 𝜎𝐸 − (𝜇 + 𝛾) 𝐼𝑑𝑅𝑑𝑡 = 𝜇𝑁𝑝 + 𝑟 (𝑡) 𝑆 + 𝛾𝐼 − (𝜇 + 𝛿) 𝑅,
(1)

where 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝑅 is the total population size,
with 𝑆, 𝐸, 𝐼, 𝑅 denoting the fractions of population that are
susceptible, exposed, infected, and recovered, respectively.𝛽(𝑡) is the transmission rate and it is a continuous, positive𝑇-periodic function. 𝑝 (0 ≤ 𝑝 ≤ 1) is the vaccination rate
of all newborn children. 𝑟(𝑡) is the vaccination rate of all
susceptibles in the population and it is a continuous, positive
periodic function with period 𝐿𝑇, where 𝐿 is an integer. 𝜇 is
the commonper capita birth and death rate.𝜎, 𝛾, and 𝛿 are the
per capita rates of leaving the latent stage, infected stage, and
recovered stage, respectively. It is assumed that all parameters
are positive constants.

Bai and Zhou in [5] answered some open problems stated
in [14], they also showed that their condition is a threshold
between persistence and extinction of the disease via the
framework established in [13]. They assumed that the inci-
dence was bilinear. In our study, the nonlinear assumptions
on function 𝑓 are listed below (see [4]).

(A1) 𝑓 : R+ → R+ is continuously differentiable.
(A2) 𝑓(0) = 0, 𝑓󸀠(0) > 0 and 𝑓(𝐼) > 0 for all 𝐼 > 0.
(A3) 𝑓(𝐼) − 𝐼𝑓󸀠(𝐼) ≥ 0.
Under these assumptions, function 𝑓(𝐼) includes various

types of incidence rate; in particular, when 𝑓(𝐼) = 𝐼, we are
on the bilinear case considered in [14].

In addition,we assume the following extra conditions (see
[15]).

(A4) 𝑓󸀠󸀠(0) ≤ 0.
(A5) There exists 𝜖∗ > 0 such that when 0 < 𝐼 < 𝜖∗, 𝑓(𝐼) ≥𝑓(0) + 𝐼𝑓󸀠(0) + (1/2)𝐼2𝑓󸀠󸀠(0).

This set of assumptions on the function 𝑓 allows for
more general incidence functions than the bilinear one, like
saturated incidence functions and functions of the form𝛽𝑆𝐼/(1 + 𝑘𝐼𝑞); in particular, in the case when 𝑞 > 1, they
represent psychological or media effects depending on the
infected population. In this last case the incidence function
is nonmonotone on 𝐼. (A3) regulates the value of 𝑓(𝐼)
comparing it with the value at 𝐼 of a line containing the origin
of slope 𝑓󸀠(𝐼) (note that this line varies as 𝐼 increases), (A4)
requires a concave 𝑓(𝐼) at the origin, and (A5) imposes the
geometrical condition that in a small neighborhood of the
origin 𝑓(𝐼) must lie between the tangent line of 𝑓 at 𝐼 and
a concave parabola tangent to 𝑓 at 𝐼.

We consider a family of 𝑆𝐸𝐼𝑅𝑆 epidemic models with
periodic coefficients and general incidence rate in epidemi-
ology. Then we show that the global dynamics of solutions is
determined by the basic reproduction number R0, general-
izing the results in [5]. The layout of this paper is as follows:
In Section 2, we prove the existence of a disease-free periodic
solution and we introduce the basic reproduction number via
the theory developed in [12, 13]. In Section 3, we adapt the
arguments given in [5] to prove that the disease-free periodic
solution of system (1) is globally asymptotically stable ifR0 <1 and it is persistent when R0 > 1. Finally, in Section 4,
we give some numerical simulations of our results, making a
comparison between our basic reproduction numberR0 and
the average reproduction numberR𝑇

0 used by several authors
(see, e.g., [10, 11]).

2. The Basic Reproduction Number

First of all, we prove nonnegativity of the solutions under
nonnegative initial conditions.

Theorem 1. Let 𝑆0, 𝐸0, 𝐼0, 𝑅0 ≥ 0.The solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),𝑅(𝑡)) of (1) with(𝑆 (0) , 𝐸 (0) , 𝐼 (0) , 𝑅 (0)) = (𝑆0, 𝐸0, 𝐼0, 𝑅0) (2)

is nonnegative in the sense that 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) ≥ 0,∀𝑡 > 0,
and satisfies 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁, with𝑁 constant.

Proof. Let 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡); then, adding all
equations of system (1), we can see that 𝑑𝑁/𝑑𝑡 = 0, so the
value of 𝑁 is constant. Now, set 𝑥(𝑡) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡))
as the solution of system (1) under initial conditions 𝑥0 =(𝑆(0), 𝐸(0), 𝐼(0), 𝑅(0)) = (𝑆0, 𝐸0, 𝐼0, 𝑅0) ≥ 0. By the continuity
of solutions, for all of 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡) and 𝑅(𝑡) that have a
positive initial value at 𝑡 = 0, we have the existence of an
interval (0, 𝑡0) such that 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) ≥ 0 for 0 < 𝑡 < 𝑡0.
We will prove that 𝑡0 = ∞.

If 𝑆(𝑡1) = 0 for a 𝑡1 ≥ 0 and other components of 𝑥(𝑡)
remain nonnegative at 𝑡 = 𝑡1, then𝑑𝑆𝑑𝑡 (𝑡1) = 𝜇𝑁 (1 − 𝑝) + 𝛿𝑅 (𝑡1) ≥ 0, (3)

implying that whenever the solution 𝑥(𝑡) touches the 𝑆-axis,
the derivative of 𝑆 is nondecreasing and the function 𝑆(𝑡) does
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not cross to negative values. Similarly, when 𝐸(𝑡1) = 0 for a𝑡1 ≥ 0 and other components remain nonnegative, we have𝑑𝐸𝑑𝑡 (𝑡1) = 𝛽 (𝑡1) 𝑆 (𝑡1) 𝑓 (𝐼 (𝑡1)) ≥ 0. (4)

When 𝐼(𝑡1) = 0 for a 𝑡1 ≥ 0 and other components remain
nonnegative, 𝑑𝐼𝑑𝑡 (𝑡1) = 𝜎𝐸 (𝑡1) ≥ 0. (5)

Finally, when𝑅(𝑡1) = 0 for a 𝑡1 ≥ 0 and other components
remain nonnegative,𝑑𝑅𝑑𝑡 (𝑡1) = 𝜇𝑁𝑝 + 𝑟 (𝑡1) 𝑆 (𝑡1) + 𝛾𝐼 (𝑡1) ≥ 0. (6)

Therefore, whenever 𝑥(𝑡) touches any of the axes 𝑆 = 0,𝐸 = 0, 𝐼 = 0, or 𝑅 = 0, it never crosses them.

In order to make the analysis of the model in a simpler
way from now on, we make a reduction of dimension in
system (1) making 𝑅 = 𝑁−𝑆−𝐸−𝐼, obtaining the following:𝑑𝑆𝑑𝑡 = 𝜇𝑁 (1 − 𝑝) − 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝑟 (𝑡)) 𝑆+ 𝛿 (𝑁 − 𝑆 − 𝐸 − 𝐼) ,𝑑𝐸𝑑𝑡 = 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝜎) 𝐸,𝑑𝐼𝑑𝑡 = 𝜎𝐸 − (𝜇 + 𝛾) 𝐼.

(7)

The dynamics of system (1) is equivalent to that of (7);
moreover, due to positivity of solutions, we have 𝑆+𝐸+𝐼 ≤ 𝑁,
so we study the dynamics of system (7) in the region𝑋 = {(𝑆, 𝐸, 𝐼) ∈ R3

+ : 𝑆 + 𝐸 + 𝐼 ≤ 𝑁} . (8)

A disease-free periodic solution can be found for (7). To
find it, set 𝐸 = 𝐼 = 0; then, from the first equation of (7) we
can obtain the following initial value problem:𝑑𝑆𝑑𝑡 = 𝜇𝑁 (1 − 𝑝) − (𝜇 + 𝑟 (𝑡)) 𝑆 + 𝛿 (𝑁 − 𝑆) ,𝑆 (0) = 𝑆0 ∈ R+. (9)

From [5, 14], the equation above admits a unique positive𝐿𝑇-periodic solution given by

𝑆 (𝑡) = 𝑒−∫𝑡0 (𝜇+𝑟(𝑠)+𝛿)𝑑𝑠 (𝑆 (0)
+ 𝑁 (𝜇 (1 − 𝑝) + 𝛿)∫𝑡

0
𝑒∫𝑠0 (𝜇+𝑟(𝜉)+𝛿)𝑑𝜉𝑑𝑠) , (10)

where

𝑆 (0) = 𝑁 (𝜇 (1 − 𝑝) + 𝛿) ∫𝐿𝑇0 𝑒∫𝑠0 (𝜇+𝑟(𝜉)+𝛿)𝑑𝜉𝑑𝑠𝑒∫𝐿𝑇0 (𝜇+𝑟(𝑠)+𝛿)𝑑𝑠 − 1 . (11)

Therefore, (𝑆(𝑡), 0, 0) is a disease-free periodic solution of
(7); moreover, from [5] we have that 𝑆(𝑡) ≤ 𝑁; therefore,(𝑆(𝑡), 0, 0) lives in𝑋.

Using the notation of [9], we sort the compartments
so that the first two compartments correspond to infected
individuals. Let 𝑥 = (𝐸, 𝐼, 𝑆) and define

(i) F𝑖: the rate of new infection in compartment 𝑖,
(ii) V+

𝑖 : the rate of individuals into compartment 𝑖 by
other means,

(iii) V−
𝑖 : the rate of individuals transfer out of compart-

ment 𝑖.
System can be written as

𝑥󸀠 (𝑡) = ( 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝜎) 𝐸𝜎𝐸 − (𝜇 + 𝛾) 𝐼𝜇𝑁 (1 − 𝑝) − 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝑟 (𝑡)) 𝑆 + 𝛿 (𝑁 − 𝑆 − 𝐸 − 𝐼)) = F −V, (12)

whereV =V− −V+,

F = (𝛽 (𝑡) 𝑆𝑓 (𝐼)00 ) ,
V

+ = ( 0𝜎𝐸𝜇𝑁 (1 − 𝑝) + 𝛿𝑁) ,

V
− = ( (𝜇 + 𝜎) 𝐸(𝜇 + 𝛾) 𝐼𝛽 (𝑡) 𝑆𝑓 (𝐼) + 𝛿 (𝑆 + 𝐸 + 𝐼) + (𝜇 + 𝑟 (𝑡)) 𝑆) .

(13)

Linearizing system (12) around the disease-free solution,
we obtain the matrix of partial derivatives 𝐽(0, 0, 𝑆) =𝐷F(0, 0, 𝑆) − 𝐷V(0, 0, 𝑆), where



4 International Journal of Differential Equations

𝐷F (0, 0, 𝑆) = (0 𝛽 (𝑡) 𝑆𝑓󸀠 (0) 00 0 00 0 0)𝐷V (0, 0, 𝑆)
= (𝜇 + 𝜎 0 0−𝜎 𝜇 + 𝛾 0𝛿 𝛽 (𝑡) 𝑆𝑓󸀠 (0) + 𝛿 𝛿 + 𝜇 + 𝑟 (𝑡)) .

(14)

Using Lemma 1 of [9], we part𝐷F and𝐷V and set

𝐹 (𝑡) = (0 𝛽 (𝑡) 𝑆𝑓󸀠 (0)0 0 ) ,
𝑉 (𝑡) = (𝜇 + 𝜎 0−𝜎 𝜇 + 𝛾) .

(15)

For a compartmental epidemiological model based on an
autonomous system, the basic reproduction number is deter-
mined by the spectral radius of the next-generation matrix𝐹𝑉−1 (which is independent of time) [9]. The definition of
basic reproduction number for nonautonomous systems has
been studied for multiple authors; see, for example, [12, 13].
Particularly, Wang and Zhao in [13] extended the work of [9]
to include epidemiological models in periodic environments.
They introduced the next infection operatorL : 𝐶𝐿𝑇 → 𝐶𝐿𝑇
given by(L𝜙) (𝑡) = ∫∞

0
𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,∀𝑡 ∈ R, 𝜙 ∈ 𝐶𝐿𝑇, (16)

where 𝐶𝐿𝑇 is the ordered Banach space of all 𝐿𝑇 periodic
functions from R to R2, which is equipped with the maxi-
mumnorm. 𝜙(𝑠) ∈ 𝐶𝐿𝑇 is the initial distribution of infectious
individuals in this periodic environment, and 𝑌(𝑡, 𝑠), 𝑡 ≥ 𝑠 is
the evolution operator of the linear periodic system:𝑑𝑦𝑑𝑡 = −𝑉 (𝑡) 𝑦, (17)

meaning that, for each 𝑠 ∈ R, the 2 × 2matrix 𝑌 satisfies𝑑𝑌 (𝑡, 𝑠)𝑑𝑡 = −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠, 𝑌 (𝑠, 𝑠) = 𝐼2×2. (18)

L𝜙 is the distribution of accumulative new infections
at time 𝑡 produced by all those infected individuals 𝜙(𝑠)
introduced before 𝑡, with kernel𝐾(𝑡, 𝑎) = 𝑌(𝑡, 𝑡 − 𝑎)𝐹(𝑡 − 𝑎).
The coefficient𝐾𝑖,𝑗(𝑡, 𝑎) in row 𝑖 and column 𝑗 represents the
expected number of individuals in compartment 𝐼𝑖 that one
individual in compartment 𝐼𝑗 generates at the beginning of an
epidemic per unit time at time 𝑡 if it has been in compartment𝐼𝑗 for 𝑎 units of time, with 𝐼1 = 𝐸, 𝐼2 = 𝐼 [16].

Let 𝑟0 > 0, 𝑟0 is an eigenvalue of L if there is a
nonnegative eigenfunction V(𝑡) ∈ 𝐶𝐿𝑇 such that

LV = 𝑟0V. (19)

Therefore, the basic reproduction number is defined as

R0 fl 𝜌 (L) , (20)

the spectral radius ofL. The basic reproduction number can
be evaluated by several numerical methods and approxima-
tions [15–17]; in Section 4 we discuss this topic.

3. The Threshold Dynamics of 𝑅0
3.1. Disease Extinction

Theorem 2. Let R0 be defined as (20); then the disease-free
periodic solution (𝑆(𝑡), 0, 0) is asymptotically stable if R0 < 1
and unstable ifR0 > 1.
Proof. We use Theorem 2.2 of [13] and check conditions
(A1)–(A7). Conditions (A1)–(A5) are clearly satisfied from
the definitions ofF andV given in Section 2. We prove only
conditions (A6) and (A7). Define𝑀(𝑡) fl − (𝜇 + 𝑟 (𝑡) + 𝛿) , (21)

and let Φ𝑀(𝑡) be the monodromy matrix of system𝑑𝑧𝑑𝑡 = 𝑀 (𝑡) 𝑧. (22)

(A6) 𝜌(Φ𝑀(𝐿𝑇)) < 1. Let Ψ𝑀 be a fundamental matrix for
system 𝑑𝑧/𝑑𝑡 = 𝑀(𝑡)𝑧, with𝑀 defined as before and𝐿𝑇 periodic; themonodromymatrixΦ𝑀(𝐿𝑇) is given
byΦ𝑀(𝐿𝑇) = Ψ−1

𝑀 (0)Ψ𝑀(𝐿𝑇).The general solution of
(22) is

𝑧 (𝑡) = 𝐾 exp(−∫𝑡
0
(𝜇 + 𝑟 (𝑠) + 𝛿) 𝑑𝑠) , (23)

so Ψ𝑀 = exp(− ∫𝑡0 (𝜇 + 𝑟(𝑠) + 𝛿)𝑑𝑠) and Ψ−1
𝑀 =

exp(∫𝑡0 (𝜇 + 𝑟(𝑠) + 𝛿)𝑑𝑠). Note that Ψ−1
𝑀 (0) = 1, soΦ𝑀(𝐿𝑇) = Ψ𝑀(𝐿𝑇) and

Φ𝑀 (𝐿𝑇) = exp(−∫𝐿𝑇
0
(𝜇 + 𝑟 (𝑠) + 𝛿) 𝑑𝑠) . (24)

Due to the fact that Φ𝑀(𝐿𝑇) is a constant, its eigen-
value is itself and 𝜌(Φ𝑀(𝐿𝑇)) < 1 for 𝜇, 𝛿, 𝑟(𝑠) > 0.

(A7) 𝜌(Φ−𝑉(𝐿𝑇)) < 1. Solving the system 𝑑𝑧/𝑑𝑡 = −𝑉(𝑡)𝑧,
we arrive at the general solution

𝑧 (𝑡) = 𝑐1(𝛾 − 𝜎𝜎1 ) 𝑒−(𝜇+𝜎)𝑡 + 𝑐2 (01) 𝑒−(𝜇+𝛾)𝑡, (25)

so

Ψ−𝑉 (𝑡) = (𝛾 − 𝜎𝜎 𝑒−(𝜇+𝜎)𝑡 0𝑒−(𝜇+𝜎)𝑡 𝑒−(𝜇+𝛾)𝑡) . (26)
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ComputingΦ−𝑉(𝐿𝑇) = Ψ−1
−𝑉(0)Ψ−𝑉(𝐿𝑇), we have

Φ−𝑉 (𝐿𝑇) = (𝑒−(𝜇+𝜎)𝐿𝑇 00 𝑒−(𝜇+𝛾)𝐿𝑇) . (27)

Clearly, 𝜌(Φ−𝑉(𝐿𝑇)) = max{𝑒−(𝜇+𝜎)𝐿𝑇, 𝑒−(𝜇+𝛾)𝐿𝑇} < 1
for 𝜇, 𝛾, 𝜎 > 0.

Note 1. Due to the fact thatΨ𝐴 is a fundamental solution of a
periodic system, we can always choose it such that Ψ(0) = 𝐼,
so the monodromy matrix satisfies Φ𝐴(𝐿𝑇) = Ψ𝐴(𝐿𝑇). This
property is used in further analysis.

In order to prove the global stability of the disease-free
periodic solution, we enunciate some useful definitions and
some lemmas.

Let 𝐴(𝑡) be continuous, cooperative, irreducible, and 𝜔-
periodic 𝑘 × 𝑘 matrix function, and Ψ𝐴(𝑡) the fundamental
matrix of system 𝑥󸀠(𝑡) = 𝐴(𝑡)𝑥(𝑡). Denote by 𝜌(Ψ𝐴(𝜔)) the
spectral radius of Ψ𝐴(𝜔).
Lemma 3. Let 𝑝 = (1/𝜔) ln 𝜌(Ψ𝐴(𝜔)). Then there exists a
positive, 𝜔-periodic function V(𝑡) such that 𝑒𝑝𝑡V(𝑡) is a solution
of 𝑥󸀠(𝑡) = 𝐴(𝑡)𝑥(𝑡) (see proof in Lemma 2.1 of [18]).

Lemma 4. Function 𝑓(𝐼) of model (1) satisfies 𝑓(𝐼) ≤ 𝑓󸀠(0)𝐼,∀𝐼 ≥ 0.
Proof. Using assumptions on function 𝑓, we have𝑑𝑑𝐼 (𝑓 (𝐼)𝐼 ) = 𝐼𝑓󸀠 (𝐼) − 𝑓 (𝐼)𝐼2 ≤ 0, (28)

so function 𝑓(𝐼)/𝐼 decreases ∀𝐼 > 0 and then 𝑓(𝐼)/𝐼 ≤
lim𝐼→0+(𝑓(𝐼)/𝐼) = 𝑓󸀠(0).
Lemma 5. Let (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) be a solution of system (7) with
initial conditions (𝑆0, 𝐸0, 𝐼0) ≥ 0, and (𝑆(𝑡), 0, 0) the disease-
free periodic solution of (7); then

lim sup
𝑡→∞

(𝑆 (𝑡) − 𝑆 (𝑡)) ≤ 0. (29)

Proof. Proof is similar to Lemma 4.1 of [14]. 𝑆(𝑡) satisfies the
first equation of system (7); then𝑑𝑆𝑑𝑡 = 𝜇𝑁 (1 − 𝑝) − 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝑟 (𝑡)) 𝑆+ 𝛿 (𝑁 − 𝑆 − 𝐸 − 𝐼)≤ 𝑁 (𝜇 (1 − 𝑝) + 𝛿) − (𝜇 + 𝑟 (𝑡) + 𝛿) 𝑆. (30)

Let𝑋(𝑡) = 𝑆(𝑡) − 𝑆(𝑡); then𝑑𝑋𝑑𝑡 = (𝜇 + 𝑟 (𝑡) + 𝛿) (𝑆 − 𝑆) − 𝛽 (𝑡) 𝑆𝑓 (𝐼) − 𝛿 (𝐸 + 𝐼)≤ − (𝜇 + 𝑟 (𝑡) + 𝛿)𝑋. (31)

Using Gronwall’s inequality𝑋(𝑡) ≤ 𝑋(0)𝑒−∫𝑡0 (𝜇+𝑟(𝑠)+𝛿)𝑑𝑠,𝑆 (𝑡) − 𝑆 (𝑡) ≤ (𝑆 (0) − 𝑆 (0)) 𝑒−∫𝑡0 (𝜇+𝑟(𝑠)+𝛿)𝑑𝑠= (𝑆 (0) − 𝑆 (0)) 𝑒−(𝜇+𝛿)𝑡𝑒−∫𝑡0 𝑟(𝑠)𝑑𝑠. (32)

Taking limits in both sides, we obtain that lim sup𝑡→∞𝑆(𝑡) −𝑆(𝑡) ≤ 0.
Now, we are able to enunciate our theorem for global

stability of disease-free periodic solution.

Theorem 6. The disease-free periodic solution (𝑆(𝑡), 0, 0) of
system (7) is globally asymptotically stable ifR0 < 1.
Proof. FromTheorem 2we have that (𝑆(𝑡), 0, 0) is unstable for
R0 > 1 and asymptotically stable forR0 < 1, so it is sufficient
to prove that any solution (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) with nonnegative
initial conditions (𝑆0, 𝐸0, 𝐼0) approaches (𝑆, 0, 0) as 𝑡 tends to
infinity.

Let 𝜖 > 0; from Lemma 5 we have

lim sup
𝑡→∞

(𝑆 (𝑡) − 𝑆 (𝑡)) = lim
𝑡→∞

sup
𝜏≥𝑡
(𝑆 (𝜏) − 𝑆 (𝜏)) = 𝐿

≤ 0, (33)

so there exists a𝑁 > 0 such that for all 𝑡1 > 𝑁−𝜖 < sup
𝑡≥𝑡1
(𝑆 (𝑡) − 𝑆 (𝑡)) − 𝐿 < 𝜖, (34)

which implies that sup𝑡≥𝑡1(𝑆(𝑡)−𝑆(𝑡)) < 𝜖+𝐿 ≤ 𝜖.Then, from
the definition of supremum, we have that for all 𝑡 > 𝑡1𝑆 (𝑡) − 𝑆 (𝑡) ≤ sup

𝑡≥𝑡1
(𝑆 (𝑡) − 𝑆 (𝑡)) < 𝜖. (35)

Then, we have proved that for all 𝜖 > 0we can find a 𝑡1 > 0
such that 𝑆(𝑡) < 𝜖 + 𝑆(𝑡) for all 𝑡 > 𝑡1.

Now, using Lemma 4, for 𝜖 > 0 we can find a 𝑡1 > 0 such
that for 𝑡 > 𝑡1𝑑𝐸𝑑𝑡 = 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝜎) 𝐸≤ 𝛽 (𝑡) 𝑆 (𝑡) 𝑓󸀠 (0) 𝐼 − (𝜇 + 𝜎) 𝐸 (𝑡) (36)

< 𝛽 (𝑡) 𝑓󸀠 (0) (𝑆 (𝑡) + 𝜖) 𝐼 (𝑡) − (𝜇 + 𝜎) 𝐸 (𝑡) . (37)

We consider the following perturbed subsystem:𝑑𝐸𝑑𝑡 = 𝛽 (𝑡) 𝑓󸀠 (0) (𝑆 + 𝜖) 𝐼 − (𝜇 + 𝜎) 𝐸,𝑑𝐼𝑑𝑡 = 𝜎𝐸 − (𝜇 + 𝛾) 𝐼, (38)

which can be rewritten as(𝑑𝐸𝑑𝑡 , 𝑑𝐼𝑑𝑡)𝑇 = (𝐹 (𝑡) − 𝑉 (𝑡)) (𝐸, 𝐼)𝑇+ 𝜖𝐻 (𝑡) (𝐸, 𝐼)𝑇 , (39)
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with 𝐹(𝑡), 𝑉(𝑡) defined in (15) and

𝐻(𝑡) = (0 𝛽 (𝑡) 𝑓󸀠 (0)0 0 ) . (40)

Matrix (𝐹 − 𝑉 + 𝜖𝐻)(𝑡) is 𝐿𝑇-periodic, cooperative,
irreducible, and continuous. Using Lemma 3, if 𝑞 =(1/𝐿𝑇) ln 𝜌(Ψ𝐹−𝑉+𝜖𝐻(𝐿𝑇)), then there exists a positive and𝐿𝑇-periodic function V(𝑡) = (V1(𝑡), V2(𝑡))𝑇 such that 𝑒𝑞𝑡V(𝑡)
is solution of system (38). Note that for all 𝑘 > 0, function𝑘𝑒𝑞(𝑡−𝑡𝑖)V(𝑡 − 𝑡𝑖) is also a solution of system (38) with initial
condition 𝑘V(0) at 𝑡 = 𝑡𝑖.

Choose a 𝑡 > 𝑡1 and 𝛼1 > 0 such that (𝐸(𝑡), 𝐼(𝑡))𝑇 ≤𝛼1V(0); then from (37) we have that

(𝑑𝐸𝑑𝑡 , 𝑑𝐼𝑑𝑡 )𝑇 ≤ (𝐹 − 𝑉) (𝐸, 𝐼)𝑇 + 𝜖𝐻 (𝐸, 𝐼)𝑇 , (41)

and using a comparison principle (see, e.g., [19] Theorem
B.1), we have (𝐸(𝑡), 𝐼(𝑡))𝑇 ≤ 𝛼1𝑒𝑞(𝑡−𝑡)V(𝑡 − 𝑡) for all 𝑡 > 𝑡.

From Theorem 2.2 of [13], R0 < 1 iff 𝜌(Φ𝐹−𝑉(𝐿𝑇)) <1. By the continuity of the spectrum for matrices (see [20],
Section II.5.8), we can choose 𝜖 > 0 small enough so that𝜌(Φ𝐹−𝑉+𝜖𝐻(𝐿𝑇)) < 1 and then 𝑞 < 0 (see Note 1). Thus, using
positivity of solutions and comparison,0 ≤ lim

𝑡→∞
𝐸 (𝑡) ≤ lim

𝑡→∞
𝛼1𝑒𝑞(𝑡−𝑡)V1 (𝑡 − 𝑡) = 0. (42)

And similarly for 𝐼, we obtain that

lim
𝑡→∞

𝐸 (𝑡) = 0
lim
𝑡→∞

𝐼 (𝑡) = 0. (43)

We need only to prove that 𝑆(𝑡) approaches 𝑆. At disease-
free periodic solution 𝑅̂(𝑡) = 𝑁 − 𝑆(𝑡), where 𝑅̂ satisfies𝑑𝑅̂𝑑𝑡 = 𝜇𝑁𝑝 + 𝑟 (𝑡) 𝑆 − (𝜇 + 𝛿) 𝑅̂. (44)

Thus, 𝑅(𝑡) = 𝑁 − 𝑆(𝑡) − 𝐸(𝑡) − 𝐼(𝑡) satisfies𝑑 (𝑅 − 𝑅̂)𝑑𝑡 = 𝑟 (𝑡) (𝑆 − 𝑆) + 𝛾𝐼 − (𝜇 + 𝛿) (𝑅 − 𝑅̂) . (45)

Let 𝜖1 > 0 be arbitrary and 𝑟max = max𝑢∈[0,𝐿𝑇]𝑟(𝑢). Due
to (43) we can find a 𝑡2 > 0 such that 𝐼(𝑡) < 𝜖1 for 𝑡 > 𝑡2;
moreover, we can find a 𝑡3 > 0 such that 𝑆(𝑡) ≤ 𝑆(𝑡) + 𝜖1 for𝑡 > 𝑡3. Then, let 𝑡4 = max{𝑡2, 𝑡3}; we have for 𝑡 > 𝑡4𝑑 (𝑅 − 𝑅̂)𝑑𝑡 ≤ (𝑟max + 𝛾) 𝜖1 − (𝜇 + 𝛿) (𝑅 − 𝑅̂) . (46)

Multiplying in both sides by 𝑒(𝜇+𝛿)𝑡 and integrating from 𝑡4 to𝑡, we obtain(𝑅 − 𝑅̂) ≤ (𝑅 − 𝑅̂) (𝑡4) 𝑒−(𝜇+𝛿)(𝑡−𝑡4)
+ 𝜖1 (𝑟max + 𝛾)𝜇 + 𝛿 (1 − 𝑒−(𝜇+𝛿)(𝑡−𝑡4)) . (47)

So, lim sup𝑡→∞(𝑅 − 𝑅̂)(𝑡) ≤ 𝜖1(𝑟max + 𝛾)/(𝜇 + 𝛿), where𝜖1(𝑟max + 𝛾)/(𝜇 + 𝛿) is arbitrarily small. Then lim sup𝑡→∞(𝑅 −𝑅̂)(𝑡) ≤ 0, and using similar arguments for 𝑆 and 𝜖2 > 0, we
can find a 𝑡5 > 0 with 𝑅(𝑡) ≤ 𝑅̂(𝑡) + 𝜖2/2 for 𝑡 > 𝑡5. Also, from
(43), we can find 𝑡6 > 0 with 𝐸(𝑡) + 𝐼(𝑡) < 𝜖2/2 for 𝑡 > 𝑡6, so,
for 𝑡 > max{𝑡5, 𝑡6}, we have𝑆 (𝑡) = 𝑁 − 𝐸 (𝑡) − 𝐼 (𝑡) − 𝑅 (𝑡) ≥ 𝑁 − 𝑅̂ (𝑡) − 𝜖2= 𝑆 (𝑡) − 𝜖2. (48)

Or, equivalently, 𝑆(𝑡) − 𝑆(𝑡) ≥ −𝜖2, with 𝜖2 being
arbitrarily small, and this implies that lim inf 𝑡→∞(𝑆 − 𝑆)(𝑡) ≥0. We conclude by comparison and using Lemma 5 that
lim𝑡→∞𝑆(𝑡) = 𝑆(𝑡), completing the proof.

Theorem 6 shows that disease will completely disappear
as long as R0 < 1. Thus, reducing and keeping R0 below
the unity would be sufficient to eradicate infection, even in a
periodic environment and a general incidence rate.

3.2. Disease Persistence. Uniform persistence is an important
concept in population dynamics, since it characterizes the
long-term survival of some or all interacting species in an
ecosystem [21].

In this section we consider the dynamics of the periodic
model when R0 > 1. We will show that actually R0 is
a threshold parameter for the extinction and the uniform
persistence of the disease. Our results are inspired by [5, 15,
18, 22].

Let 𝑃 : 𝑋 → 𝑋 be the Poincaré map associated with
system (7); that is,𝑃 (𝑥0) = 𝜙 (𝐿𝑇, 𝑥0) , ∀𝑥0 ∈ 𝑋, (49)

where 𝑋 is defined in (8) and 𝜙(𝑡, 𝑥0) is the unique solution
of system (7) with 𝜙(0, 𝑥0) = 𝑥0. We define the following sets:𝑋0 fl {(𝑆, 𝐸, 𝐼) ∈ 𝑋 : 𝐸 > 0, 𝐼 > 0} , 𝜕𝑋0 fl 𝑋 \ 𝑋0. (50)

Note that 𝜕𝑋0 is not the boundary of 𝑋0, but it is a
standard notation of persistence theory.

Lemma 7. Set𝑋0 is positively invariant under system (7).

Proof. Let 𝑥0 = (𝑆0, 𝐸0, 𝐼0) ∈ 𝑋0, that is, 𝐸0 > 0, 𝐼0 > 0, and
let 𝜙 (𝑡, 𝑥0) = (𝑆 (𝑡) , 𝐸 (𝑡) , 𝐼 (𝑡)) (51)

be the solution of (7) with𝜙(0, 𝑥0) = 𝑥0. Due to nonnegativity
of solutions and assumptions on function 𝛽(𝑡) and 𝑓(𝐼), we
have𝑑𝐸𝑑𝑡 = 𝛽 (𝑡) 𝑆𝑓 (𝐼) − (𝜇 + 𝜎) 𝐸 ≥ − (𝜇 + 𝜎) 𝐸, ∀𝑡 > 0. (52)
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Using a comparison theorem (see, e.g., [19] Appendix B.1), we
have for all 𝑡 > 0𝐸 (𝑡) ≥ 𝐾𝑒−(𝜇+𝜎)𝑡 > 0, with 𝐾 = 𝐸 (0) > 0. (53)

Similarly, 𝑑𝐼𝑑𝑡 = 𝜎𝐸 − (𝜇 + 𝛾) 𝐼 ≥ − (𝜇 + 𝛾) 𝐼, (54)

so, 𝐼 (𝑡) ≥ 𝐼 (0) 𝑒−(𝜇+𝛾)𝑡 > 0, ∀𝑡 > 0. (55)

Therefore, 𝜙(𝑡, 𝑥0) remains on𝑋0 for all 𝑡 > 0.
To use persistence theory developed in [21], we show that𝑀𝜕 = {(𝑆, 0, 0) : 𝑆 ≥ 0} , (56)

where𝑀𝜕 fl {(𝑆0, 𝐸0, 𝐼0) ∈ 𝜕𝑋0 : 𝑃𝑚 (𝑆0, 𝐸0, 𝐼0) ∈ 𝜕𝑋0, ∀𝑚≥ 0} . (57)

Let 𝑥0 = (𝑆0, 0, 0) ∈ 𝑋 and (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)) be the
solution that passes through that initial condition. We have
that 𝜙(𝑡, 𝑥0) = (𝑆1(𝑡), 0, 0), with 𝑆1(𝑡) being a solution of
(9) and 𝑆1(0) = 𝑆0 being a solution that satisfies the initial
condition. By uniqueness of solutions we have 𝐸(𝑡) = 0 =𝐼(𝑡) ∀𝑡 ≥ 0, so 𝑥0 lives on𝑀𝜕.

Now, if 𝑥0 ∈ 𝑀𝜕, we want 𝑥0 = (𝑆0, 0, 0). We prove
an equivalent sentence: if 𝑥0 ∈ 𝜕𝑋0 \ {(𝑆, 0, 0) : 𝑆 ≥ 0},
then it does not belong to𝑀𝜕. Consider an initial point 𝑥0 =(𝑆0, 𝐸0, 𝐼0) ∈ 𝜕𝑋0 \ {(𝑆, 0, 0) : 𝑆 ≥ 0}; then 𝐸0 > 0, 𝐼0 = 0, or𝐸0 = 0, 𝐼0 > 0. Suppose that 𝐸 > 0 and 𝐼0 = 0; then 𝜙(𝑡, 𝑥0)
holds 𝑑𝐼𝑑𝑡 (0) = 𝜎𝐸 (0) > 0. (58)

By continuity of 𝐸(𝑡) and sign of derivative of 𝐼, we have
that, for small 0 < 𝑡 ≪ 1, 𝐸(𝑡) > 0, 𝐼(𝑡) > 0, so, for0 < 𝑡 ≪ 1, 𝜙(𝑡, 𝑥0) ∈ 𝑋0. Using invariance of 𝑋0 (Lemma 7)
we have 𝜙(𝑡, 𝑥0) ∈ 𝑋0 for all 𝑡 > 1. Finally, for a 𝑚 > 0 such
that 𝑚𝐿𝑇 > 1, we have 𝑃𝑚(𝑥0) = 𝜙(𝑚𝐿𝑇, 𝑥0) ∈ 𝑋0 and
this implies (56). By the existence of a disease-free periodic
solution (proved in Section 2), it is clear that there is one fixed
point of 𝑃 in𝑀𝜕 given by𝑀0 = (𝑆(0), 0, 0) ([23]).

Now, we are in a position to introduce the following result
of uniform persistence of the disease.

Theorem 8. Let R0 > 1; then there exists an 𝜖 > 0
such that any solution (𝑆(𝑡), 𝐸(𝑡)𝐼(𝑡)) of (7) with initial values(𝑆(0), 𝐸(0), 𝐼(0)) ∈ 𝑋0 satisfies

lim inf
𝑡→∞

𝐸 (𝑡) ≥ 𝜖,
lim inf
𝑡→∞

𝐼 (𝑡) ≥ 𝜖. (59)

Proof. We first prove that 𝑃 is uniformly persistent (see
Definition 1.3.2 from [21]) with respect to (𝑋0, 𝜕𝑋0), because
this implies that the solution of (7) is uniformly persistent
with respect to (𝑋0, 𝜕𝑋0) (see [21], Theorem 3.1.1). Clearly,𝑋0 is relatively open in𝑋, so 𝜕𝑋0 is relatively closed.

Define𝑊𝑠 fl {𝑥0 ∈ 𝑋0 : lim
𝑚→∞

󵄩󵄩󵄩󵄩𝑃𝑚 (𝑥0) − 𝑀0
󵄩󵄩󵄩󵄩 = 0} ; (60)

we show that𝑊𝑠(𝑀0) ∩ 𝑋0 = 0.
By Theorem 2.2 of [13], R0 > 1 if and only if𝑟(Ψ𝐹−𝑉(𝐿𝑇)) > 1. Choose an 𝜂 > 0 small enough with the

property 𝑆(𝑡) − 𝜂 > 0, ∀𝑡 > 0 (see Appendix A). For 𝛼 > 0, let
us consider the following perturbed equation:𝑑𝑆𝑑𝑡 = 𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼− (𝛽 (𝑡) 𝑓󸀠 (0) 𝛼 + 𝜇 + 𝑟 (𝑡) + 𝛿) 𝑆. (61)

System above admits a unique positive 𝐿𝑇-periodic solution
of the form

𝑆 (𝑡, 𝛼) = 𝑒−∫𝑡0 (𝛽(𝑠)𝑓󸀠(0)𝛼+𝜇+𝑟(𝑠)+𝛿)𝑑𝑠 (𝑆 (0, 𝛼)
+ (𝑁𝜇 (1 − 𝑝) + 𝑁𝛿 − 2𝛿𝛼)
⋅ ∫𝑡

0
𝑒∫𝑠0 (𝛽(𝜉)𝑓󸀠(0)𝛼+𝜇+𝑟(𝜉)+𝛿)𝑑𝜉𝑑𝑠)

(62)

whit 𝑆(𝑡, 0) = 𝑆(𝑡), which is globally attractive for all solutions
of (61) (see Appendix B for proof), and with𝑆 (0, 𝛼)
= (𝑁𝜇 (1 − 𝑝) + 𝑁𝛿 − 2𝛿𝛼) ∫𝐿𝑇0 𝑒∫𝑠0 (𝛽(𝜉)𝑓󸀠(0)𝛼+𝜇+𝑟(𝜉)+𝛿)𝑑𝜉𝑑𝑠𝑒∫𝐿𝑇0 (𝛽(𝑠)𝑓󸀠(0)𝛼+𝜇+𝑟(𝑠)+𝛿)𝑑𝑠 − 1 . (63)

Since 𝑆(0, 𝛼) is continuous in 𝛼, for all 𝜖 > 0 there is a 𝛿 >0 such that for |𝛼| < 𝛿wehave |𝑆(0, 𝛼)−𝑆(0, 0)| < 𝜖.Moreover,
by continuity of solutions with respect to initial values we can
find for all 𝜂 > 0 an 𝜖 > 0 such that if |𝑆(0, 𝛼) − 𝑆(0, 0)| < 𝜖,
then 󵄨󵄨󵄨󵄨󵄨𝑆 (𝑡, 𝛼) − 𝑆 (𝑡, 0)󵄨󵄨󵄨󵄨󵄨 < 𝜂. (64)

Therefore, for 𝜂 established before, we can find 𝛼 small
enough such that 𝑆(𝑡, 𝛼) > 𝑆(𝑡) − 𝜂, ∀𝑡 > 0.

Again, by continuity of solutions with respect to initial
values, for this small 𝛼 > 0, there exists a 𝛿 > 0 such that
for all (𝑆0, 𝐸0, 𝐼0) ∈ 𝑋0 with ‖(𝑆0, 𝐸0, 𝐼0) − 𝑀0‖ ≤ 𝛿 we have‖𝜙(𝑡, (𝑆0, 𝐸0, 𝐼0)) − 𝜙(𝑡,𝑀0)‖ < 𝛼, ∀𝑡 ∈ [0, 𝐿𝑇].

We now claim that

lim sup
𝑚→∞

󵄩󵄩󵄩󵄩𝑃𝑚 (𝑆0, 𝐸0, 𝐼0) − 𝑀0
󵄩󵄩󵄩󵄩 ≥ 𝛿,∀ (𝑆0, 𝐸0, 𝐼0) ∈ 𝑋0. (65)
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By contradiction, suppose that

lim sup
𝑚→∞

󵄩󵄩󵄩󵄩𝑃𝑚 (𝑆0, 𝐸0, 𝐼0) − 𝑀0
󵄩󵄩󵄩󵄩 < 𝛿,

for some (𝑆0, 𝐸0, 𝐼0) ∈ 𝑋0. (66)

Without loss of generality, we can assume that‖𝑃𝑚(S0, 𝐸0, 𝐼0) − 𝑀0‖ < 𝛿 for all 𝑚 ≥ 0 (see Appendix C).
From the discussion above, ‖𝜙(𝑡, 𝑃𝑚(𝑆0, 𝐸0, 𝐼0))−𝜙(𝑡,𝑀0)‖ <𝛼, ∀𝑚 ≥ 0 and 𝑡 ∈ [0, 𝐿𝑇].

For any 𝑡 ≥ 0, let 𝑡 = 𝑚𝐿𝑇 + 𝑡1, where 𝑡1 ∈ [0, 𝐿𝑇) and𝑚 = [𝑡/𝐿𝑇] is the greatest integer less than or equal to 𝑡/𝐿𝑇.
Then, we get𝜙 (𝑡, (𝑆0, 𝐸0, 𝐼0)) − 𝜙 (𝑡,𝑀0)= 𝜙 (𝑡1, 𝑃𝑚 (𝑆0, 𝐸0, 𝐼0)) − 𝜙 (𝑡,𝑀0) < 𝛼. (67)

If we set 𝜙(𝑡, (𝑆0, 𝐸0, 𝐼0)) = (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡)), then we have𝐸(𝑡) ≤ 𝛼, 𝐼(𝑡) ≤ 𝛼, ∀𝑡 ≥ 0, and from the first equation of (7)
and Lemma 4 we arrive at𝑑𝑆𝑑𝑡 ≥ 𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼− (𝛽 (𝑡) 𝑓󸀠 (0) 𝛼 + 𝜇 + 𝑟 (𝑡) + 𝛿) 𝑆, (68)

which is exactly the equation in (61). Since the unique
periodic solution of (61) is globally attractive, we have for𝑆(𝑡, 𝛼) solution of (61) that lim𝑡→∞𝑆(𝑡, 𝛼) = 𝑆(𝑡, 𝛼). So for 𝜂
given before, there exists 𝑇 > 0 such that for all 𝑡 ≥ 𝑇󵄨󵄨󵄨󵄨󵄨𝑆 (𝑡, 𝛼) − 𝑆 (𝑡, 𝛼)󵄨󵄨󵄨󵄨󵄨 < 𝜂, (69)

or equivalently 𝑆(𝑡, 𝛼) > 𝑆(𝑡, 𝛼) − 𝜂. Moreover, from previous
analysis, 𝑆(𝑡, 𝛼) − 𝜂 > 𝑆(𝑡) − 𝜂; therefore, using comparison
principle on (68) we arrive at𝑆 (𝑡) ≥ 𝑆 (𝑡) − 𝜂 (70)

for 𝑡 > 𝑇.
We have 𝐸(𝑡), 𝐼(𝑡) ≤ 𝛼, and 𝛼 is fixed small, so we can

take 𝛼 < 𝜖∗ and use assumption (A5) in Introduction (see
Appendix D) to obtain

(𝑑𝐸𝑑𝑡𝑑𝐼𝑑𝑡 ) ≥ (𝐹 − 𝑉 − 𝜂𝐻 − 𝛼𝐾) (𝐸, 𝐼)𝑇 , (71)

where 𝐹,𝑉 are defined in (15),𝐻 is defined in (40), and

𝐾 = (0 −12𝛽 (𝑡) 𝑓󸀠󸀠 (0) [𝑆 − 𝜂]0 0 ) . (72)

ByTheorem 2.2 of [13], we haveR0 > 1 iff𝜌(Φ𝐹−𝑉(𝐿𝑇)) >1. By continuity of spectrum (see [20] Section II), we can find𝛼, 𝜖 such that 𝜌 (Φ𝐹−𝑉−𝜂𝐻−𝛼𝐾) > 1. (73)

Consider the auxiliary system

(𝑑𝐸2𝑑𝑡𝑑𝐼2𝑑𝑡 ) = (𝐹 − 𝑉 − 𝜂𝐻 − 𝛼𝐾) (𝐸2, 𝐼2)𝑇 ; (74)

then, using Lemma 3 there exists a solution of (71) with the
form 𝑒𝑝2𝑡V2(𝑡), with 𝑝2 = (1/𝐿𝑇) ln(𝜌(Φ𝐹−𝑉−𝜂𝐻−𝛼𝐾(𝐿𝑇))) >0. Choose a 𝑡2 > 𝑇 and a small number 𝛼2 > 0 such that(𝐸2(𝑡2), 𝐼2(𝑡2))𝑇 ≥ 𝛼2V2(0). Using comparison principle we
get (𝐸(𝑡), 𝐼(𝑡)) ≥ 𝛼2V2(𝑡−𝑡2)𝑒𝑝2(𝑡−𝑡2), which implies𝐸(𝑡) → ∞
and 𝐼(𝑡) → ∞. This leads to a contradiction.

The claim above shows that 𝑃 is weakly uniformly
persistent with respect to (𝑋0, 𝜕𝑋0). Note that 𝑃 has a global
attractor 𝑆(0) (see Lemma 5). It follows that𝑀0 is an isolated
invariant set in 𝑋, 𝑊𝑠(𝑀0) ∩ 𝑋0 = 0. Every orbit in 𝑀𝜕
converges to𝑀0 and𝑀0 is acyclic. By the acyclicity theorem
on uniform persistence for maps ([21] Theorem 1.3.1 and
Remark 1.3.1), it follows that 𝑃 is uniformly persistent with
respect to (𝑋0, 𝜕𝑋0); that is, there exists 𝜖 > 0 such that any
solution of (7) satisfies lim𝑡→∞𝐸(𝑡) ≥ 𝜖, lim𝑡→∞𝐼(𝑡) ≥ 𝜖.
4. Numerical Simulations

In this section we provide some numerical simulations to
illustrate the results obtained in our theorems and compare
them with previous results.

To improve previous models used in references, we use a
particular function

𝑓 (𝐼) = 𝐼1 + 𝑎𝐼 , 𝑎 ≥ 0, (75)

which includes the case 𝑓(𝐼) = 𝐼 used in [5]. One can check
that function (75) satisfies conditions (A1)–(A5). Using this
function, system (7) is rewritten as𝑑𝑆𝑑𝑡 = 𝜇𝑁 (1 − 𝑝) − 𝛽 (𝑡) 𝑆𝐼1 + 𝑎𝐼 − (𝜇 + 𝑟 (𝑡)) 𝑆+ 𝛿 (𝑁 − 𝑆 − 𝐸 − 𝐼) ,𝑑𝐸𝑑𝑡 = 𝛽 (𝑡) 𝑆𝐼1 + 𝑎𝐼 − (𝜇 + 𝜎) 𝐸,𝑑𝐼𝑑𝑡 = 𝜎𝐸 − (𝜇 + 𝛾) 𝐼.

(76)

Set an initial population𝑁 = 2,200,000 and take time 𝑡 in
years. Suppose 𝜇 = 0.02 per year, corresponding to an average
human life time of 50 years. Following [5] take the parameters
as follows: 𝜎 = 38.5 per year, 𝛾 = 100 per year, 𝑝 = 0.85, 𝛿 =0, and 𝑎 = 1. Choose the periodic transmission as 𝛽(𝑡) = 𝛽0+0.0002 cos(2𝜋𝑡), with 𝛽0 being the transmission parameter,
and the periodic vaccination rate 𝑟(𝑡) = 0.1 + 0.004 cos(2𝜋𝑡).
Both functions have period 𝐿𝑇 = 1.

There exists multiple methods for computing the basic
reproduction number, via numerical approximations, or
finding a positive solution of the equation 𝜌(𝑊(𝐿𝑇, 0, 𝜆)) = 1
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Figure 1: 𝑆 component of infection-free periodic solution. Time 𝑡 is given in years. (a) 𝑆(𝑡), because it is a periodic function of period 1, is
plotted only in [0, 1]. (b) Taylor expansion of 𝑆 around 𝑡 = 0 of order 𝑡10.
(see Theorem 2.1 of [13]). In order to compare our work
with previous works, we approximate the basic reproduction
number with its average valueR𝑇

0 , used by several authors as
the reproduction number (for example [10, 11]), so define𝑅𝑇0 = 𝜌 ([𝐹]𝑉−1) , (77)

where 𝑉 is given by (15) and

[𝐹] = (0 [𝛽] [𝑆] 𝑓󸀠 (0)0 0 ) , (78)

with [𝛽], [𝑆] being the average of functions 𝛽, 𝑆 defined as[𝛽] = (1/𝐿𝑇) ∫𝐿𝑇0 𝛽(𝑡)𝑑𝑡, 𝑆 = (1/𝐿𝑇) ∫𝐿𝑇0 𝑆(𝑡)𝑑𝑡. Computing
each average, we obtain𝑅𝑇0 = 549.6702634𝛽0, (79)

so 𝑅𝑇0 > 1 for 𝛽0 ∈ (0.001819272510,∞).
Following Theorem 2.1 of [13], to compute R0, let𝑊(𝑡, 𝑠, 𝜆), 𝑡 ≥ 𝑠, be the evolution operator of the system𝑑𝑤𝑑𝑡 = (−𝑉 (𝑡) + 𝐹 (𝑡)𝜆 )𝑤 (80)

that is, for each 𝜆 ∈ (0,∞), 𝑑𝑊(𝑡, 𝑠, 𝜆)/𝑑𝑡 = (−𝑉(𝑡) +𝐹(𝑡)/𝜆)𝑊(𝑡, 𝑠, 𝜆), ∀𝑡 ≥ 𝑠, and 𝑊(𝑠, 𝑠, 𝜆) = 𝐼2×2. With this
operator,R0 > 0 is the unique solution of𝜌(𝑊(𝐿𝑇, 0, 𝜆)) = 1.
Example 1. To illustrate our results, fix 𝛽0 = 0.0018.
Computing 𝑅𝑇0 , we have 𝑅𝑇0 = 0.9894064741, which is a first
approximation of 𝑅0. To solve system (80) numerically, we
substitute the terms of expression of 𝑆(𝑡) in (10):

𝑆 (𝑡)
= 𝑒−0.1200000000𝑡−0.0006366197724 sin(6.283185307𝑡) (54999.33689
+ 6600.0 ∫𝑡

0.0
𝑒0.1200000000𝑠+0.0006366197724 sin(6.283185307𝑠)𝑑𝑠)

(81)

The previous integral cannot be computed analytically, so
we approach 𝑆(𝑡) using Taylor expansion around 0 (remem-
ber that we want so solve 𝜌(𝑊(𝐿𝑇, 0, 𝜆)) = 1, where 𝐿𝑇 = 1),
so even when we cannot find an explicit expression for 𝑆(𝑡),
the Taylor expansion is a good way to estimate it in (0, 1). It
could be of interest to also use an approach of 𝑆(𝑡) around𝑡 = 1 and compare the results with those obtained in the
present work (see Section 5 for a discussion about this topic).

Setting an initial value 𝜆0 = 0.98 and letting 𝜆𝑖 = 𝜆0 +𝑖(0.0001), we solve system (80) numerically for each 𝜆𝑖 (using
initial conditions 𝑤(0) = (1, 0) and 𝑤(0) = (0, 1), to satisfy𝑊(0, 0) = 𝐼2×2), and compute 𝜌1 = 𝜌(𝑊(𝐿𝑇, 0, 𝜆𝑖)) until 𝜌1 ∼1. With previous process we arrive at 𝜌1 = 1.00120166209265
for 𝜆 = 0.9872 and 𝜌1 = 0.997826338969630 for 𝜆 =0.9873; therefore R0 ∈ (0.9872, 0.9873). Using a finer step
size 0.0000001 to have more accuracy, we arrive at R0 ∼0.9872355 < 1.

Set initial values as 𝑆(0) = 1,500,000, 𝐸(0) = 400,000,𝐼(0) = 40,000, and 𝑅(0) = 𝑁 − (𝑆(0) + 𝐸(0) + 𝐼(0)).
There exist multiple numerical methods to compute and

plot the solutions of nonautonomous differential equations;
see, for example, the Adomian method, the homotopy anal-
ysis method, or the modified homotopy methods (see, e.g.,
[24, 25]). For this workwe useMatlab algorithms (ODE45) to
graph the solution of system (76)with these initial conditions.
Figures 2 and 3 shows the results. We can see that 𝐼(𝑡), 𝐸(𝑡)
goes to zero, while 𝑆(𝑡), 𝑅(𝑡) tend to stabilize; also 𝑆(𝑡) is
tending to 𝑆(𝑡) with values between 54,000 and 56,000 (see
Figure 1); this shows the results obtained inTheorem 6.
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Figure 2: Solution of exposed and infected populations of SEIRS system whenR0 < 1. We can see that both approach zero when time goes
to infinity. Time 𝑡 is given in years.
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Figure 3: Solution of susceptible and recovered populations of SEIRS system whenR0 < 1. We can see that 𝑆 approaches 𝑆(𝑡) (see Figure 1),
and 𝑅 approaches 𝑅̂(𝑡) = 𝑁 − 𝑆(𝑡). Time 𝑡 is given in years.

Example 2. Now, choose 𝛽0 = 0.005. As we can see in Figures
4 and 5, the solutions of system (1) remain persistent when𝑡 tends to infinity; this fact suggests that R0 > 1 from
Theorem 8. In fact, if we compute the basic reproduction
number and its average (using the process described in
example 1), R𝑇

0 = 3.298021580 and R0 ∈ (2.7456, 2.7457);
therefore it is bigger than one. In fact, this shows the results
of persistence obtained inTheorem 8.

5. Conclusion

In this paper we presented a model with seasonal fluctuation
with a general incidence function 𝑆𝑓(𝐼) that includes the
bilinear case 𝛽𝑆𝐼 (studied by [5]) and a family of saturated
incidence rate of the form 𝛽𝑆𝐼/(1 + 𝑘𝐼𝑞). We proved the

existence of a disease-free periodic solution (𝑆(𝑡), 0, 0) and
defined the basic reproductionnumberR0, proving that it is a
threshold parameter for disease, in the sense that whenR0 <1, the disease-free periodic solution is globally asymptotically
stable, and when R0 > 1, the disease is persistent. A next
step of this work is to consider a family of incidence rates
more generally, changing 𝑆𝑓(𝐼) by𝑓(𝑆, 𝐼) and trying to obtain
results of persistence and stability similar to the ones obtained
in this work. Another interesting topic is to ask what the
behavior of system at R0 = 1 is, in order to complete the
analysis that we have made.

Several authors (e.g., [10, 11]) define R0 as an average,
which we denoted as R𝑇

0 to distinguish between it and
the basic reproduction number defined by [13], via the
monodromy matrix (which is a real threshold parameter



International Journal of Differential Equations 11

Exposed population

0

20

40

60

80

100

120

140

160

180
E
(t
)

10 20 30 40 50 60 700
t

Infected population

0

10

20

30

40

50

60

70

I(
t)

10 20 30 40 50 60 700
t

Figure 4: Solution of exposed and infected individuals of SEIRS system when R0 > 1. Both 𝐸 and 𝐼 remain persistent when time goes to
infinity. Time 𝑡 is given in years.
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Figure 5: Solution of susceptible and recovered populations of SEIRS system whenR0 > 1. Time 𝑡 is given in years.

for extinction and persistence of disease). We compute R𝑇
0 ,

approximate R0 (with the help of Taylor theorem), and
compare these values, obtaining thatR𝑇

0 is not equal to R0;
moreover R𝑇

0 > R0 in both examples (similar comparisons
can be observed also in the works made by [13, 17]). This fact
suggests that the use ofR𝑇

0 for persistence overestimates the
threshold. To emphasize this conclusion, it would be helpful
to find an example where R0 < 1 but R𝑇

0 > 1 and then
compute the solutions to observe the behavior (we affirm that
the disease will go extinct due toTheorem 6).

To obtain the estimation of R0 we used a code in
Maple, which is based on numerical computing of 𝜌1 =𝜌(𝑊(𝐿𝑇, 0, 𝜆𝑖)) until 𝜌1 ∼ 1, where 𝜆𝑖 = 𝜆0 + Δ 𝜆𝑖, Δ 𝜆 is
the step size, and the initial estimation 𝜆0 is taken as 𝑅𝑇0 − 𝜖.
For this approximation we have used a Taylor expansion

of the periodic solution 𝑆(𝑡); another interesting possibility
could be varying the approximation used forR0, for example,
changing the Taylor approach of 𝑆(𝑡) around 𝑡 = 1 instead of𝑡 = 0. The graphs of the solutions were obtained with ODE
45 from Matlab, but other methods can be used to improve
them, for example, Adomianmethods or homotopymethods
[24, 25]. The Maple code used to estimateR0 is available for
anyone who wants to use it.

Appendix

A. Assumption on 𝜂 Used in Theorem 8

Note that 𝑆(𝑡) has a positive minimum value min(𝑆(𝑡)) (it is
periodic, positive, and continuous, so it is bounded for 𝑡 ∈[0, 𝐿𝑇] and then for all 𝑡 > 0) and we can choose a 𝜂 > 0
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with the property min(𝑆(𝑡)) > 𝜂, sufficiently small such that𝑆(𝑡) − 𝜂 > 0.
B. Periodic Solution of (61)

For each 𝛼, (61) used in the proof of Theorem 8 is𝑑𝑆𝑑𝑡 = 𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼− (𝛽 (𝑡) 𝑓󸀠 (0) 𝛼 + 𝜇 + 𝑟 (𝑡) + 𝛿) 𝑆. (B.1)

Solving the equation above, we arrive at the general
solution

𝑆 (𝑡) = 𝑒−∫𝑡𝑡0 𝑝(𝑠)𝑑𝑠 [𝑆 (𝑡0)
+ (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼)∫𝑡

𝑡0
𝑒∫𝑠𝑡0 (𝑝(𝜁)𝑑𝜁)𝑑𝑠] , (B.2)

where 𝑝(𝑠) = 𝛽(𝑠)𝑓󸀠(0)𝛼 + 𝜇 + 𝑟(𝑠) + 𝛿. We shall examine the
behavior of an arbitrary solution 𝑆. For each 𝑛 = 0, 1, . . ., we
can use an initial time 𝑡0 = 𝑡0 + 𝑛𝐿𝑇 with initial point 𝑆(𝑡0)
and see that

𝑆 (𝑡0 + (𝑛 + 1) 𝐿𝑇) = 𝑒−∫(𝑡0+𝑛𝐿𝑇)+𝐿𝑇𝑡0+𝑛𝐿𝑇
𝑝(𝑠)𝑑𝑠 [𝑆 (𝑡0 + 𝑛𝐿𝑇)+ (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼)

⋅ ∫(𝑡0+𝑛𝐿𝑇)+𝐿𝑇
(𝑡0+𝑛𝐿𝑇)

𝑒∫𝑠𝑡0+𝑛𝐿𝑇(𝑝(𝜁)𝑑𝜁)𝑑𝑠] .
(B.3)

Since 𝑝(𝑠) is a periodic function,
∫(𝑡0+𝑛𝐿𝑇)+𝐿𝑇
𝑡0+𝑛𝐿𝑇

𝑝 (𝑠) 𝑑𝑠 = ∫𝑡0+𝐿𝑇
𝑡0

𝑝 (𝑠) 𝑑𝑠 = ∫𝐿𝑇
0
𝑝 (𝑠) 𝑑𝑠,

∫𝑠
𝑡0+𝑛𝐿𝑇

𝑝 (𝜁) 𝑑𝜁 = ∫𝑠−𝑛𝐿𝑇
𝑡0

𝑝 (𝜁) 𝑑𝜁, (B.4)

where 𝑠 − 𝑛𝐿𝑇 ≥ 𝑡0. Then

𝑆 (𝑡0 + (𝑛 + 1) 𝐿𝑇) = 𝑒−∫(𝑡0+𝐿𝑇)𝑡0
𝑝(𝑠)𝑑𝑠 [𝑆 (𝑡0 + 𝑛𝐿𝑇)+ (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼)

⋅ ∫(𝑡0+𝑛𝐿𝑇)+𝐿𝑇
(𝑡0+𝑛𝐿𝑇)

𝑒∫𝑠−𝐿𝑇𝑡0 (𝑝(𝜁)𝑑𝜁)𝑑𝑠] .
(B.5)

And using the change of variable 𝑢 = 𝑠 − 𝐿𝑇, we have
𝑆 (𝑡0 + (𝑛 + 1) 𝐿𝑇) = 𝑒−∫(𝑡0+𝐿𝑇)𝑡0

𝑝(𝑠)𝑑𝑠 [𝑆 (𝑡0 + 𝑛𝐿𝑇)
+ (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼)∫𝑡0+𝐿𝑇

𝑡0
𝑒∫𝑢𝑡0 (𝑝(𝜁)𝑑𝜁)𝑑𝑢] . (B.6)

Equation (B.6) gives a recursive relationship between the
solution at 𝑡0 + 𝑛𝐿𝑇 and after 𝐿𝑇 times. If we set 𝑆𝑛 = 𝑆(𝑡0 +𝑛𝐿𝑇), then for each solution 𝑆 this relationship is described
by 𝑆𝑛+1 = 𝐹 (𝑆𝑛) , (B.7)

with 𝐹 being on the right side of (B.6). If we take 𝑆𝑖 and 𝑆𝑗,
two different values of 𝑆𝑛, then󵄨󵄨󵄨󵄨󵄨𝐹 (𝑆𝑖) − 𝐹 (𝑆𝑗)󵄨󵄨󵄨󵄨󵄨 = 𝑒−∫𝑡0+𝐿𝑇𝑇0 𝑝(𝑠)𝑑𝑠 󵄨󵄨󵄨󵄨󵄨𝑆𝑖 − 𝑆𝑗󵄨󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨󵄨𝑆𝑖 − 𝑆𝑗󵄨󵄨󵄨󵄨󵄨≤ 𝑒−(𝜇+𝛿)𝐿𝑇 󵄨󵄨󵄨󵄨󵄨𝑆𝑖 − 𝑆𝑗󵄨󵄨󵄨󵄨󵄨 . (B.8)

Then, 𝐹(𝑆) is a contracting map, and by Banach fixed
point theorem 𝐹 has a unique fixed point 𝑆𝑖 such that 𝑆𝑖+1 =𝐹(𝑆𝑖) = 𝑆𝑖 or, equivalently, 𝑆(𝑡0 + 𝑖𝐿𝑇) = 𝑆(𝑡0 + (𝑖 + 1)𝐿𝑇).
This fixed point can be found for any 𝑆 that is a solution of
a differential equation with arbitrary initial condition 𝑆(𝑡0) at
any time 𝑡0. The fixed point has the form𝑆 (𝑡∗0 )
= (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼) ∫𝑡∗0+𝐿𝑇𝑡∗0

(𝑒∫𝑢𝑡0∗ 𝑝(𝑠)𝑑𝑠)𝑑𝑢𝑒∫𝐿𝑇0 𝑝(𝑠)𝑑𝑠 − 1 . (B.9)
Thus, define the function𝑆 (𝑡)
= (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼) ∫𝑡+𝐿𝑇𝑡 (𝑒∫𝑢𝑡 𝑝(𝑠)𝑑𝑠) 𝑑𝑢𝑒∫𝐿𝑇0 𝑝(𝑠)𝑑𝑠 − 1 . (B.10)

𝑆 is a periodic function with period 𝐿𝑇 and is contin-
uously differentiable with respect to 𝑡. One can check (by
computing the derivative) that 𝑆(𝑡) is a solution of differential
equation, so by existence and uniqueness of solutions it can
be rewritten as𝑆 (𝑡) = 𝑒−∫𝑡0 𝑝(𝑠)𝑑𝑠 [𝑆 (0)

+ (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼)∫𝑡
0
𝑒∫𝑠0 (𝑝(𝜁)𝑑𝜁)𝑑𝑠] , (B.11)

with initial condition

𝑆 (0) = (𝑁 (𝜇 (1 − 𝑝) + 𝛿) − 2𝛿𝛼) ∫𝐿𝑇0 𝑒∫𝑠0 (𝑝(𝜁)𝑑𝜁)𝑑𝑠𝑒∫𝐿𝑇0 𝑝(𝑠)𝑑𝑠 − 1 . (B.12)

If we suppose the existence of another periodic solution𝑆2(𝑡), thenusing (B.6)we arrive at 𝑆2(0) = 𝑆(0), by uniqueness
of solutions 𝑆 = 𝑆2, and the periodic solution is unique.
Computing the difference 𝑆(𝑡) − 𝑆(𝑡), we have𝑆 (𝑡) − 𝑆 (𝑡) = 𝑒−∫𝑡0 𝑝(𝑠)𝑑𝑠 [𝑆 (0) − 𝑆 (0)] , (B.13)

so, lim(𝑆(𝑡) − 𝑆(𝑡)) = 0. Therefore, every solution 𝑆(𝑡)
converges to 𝑆(𝑡).
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C. Assumption on 𝑃𝑚 Used in Theorem 8

Let 𝑓(𝑚) fl ‖𝑃𝑚(𝑆0, 𝐸0, 𝐼0) − 𝑀𝑖‖. If
lim sup
𝑚→∞

𝑓 (𝑚) < 𝛿,
for some (𝑆0, 𝐸0, 𝐼0) ∈ 𝑋0, 𝑖 = 1, 2, (C.1)

then we have 𝐿 = lim𝑚→∞(sup𝑛≥𝑚𝑓(𝑛)) < 𝛿. For all 𝜖 > 0
there exists a 𝑀𝜖 > 0 such that if 𝑚 ≥ 𝑀𝜖, then −𝜖 <
sup𝑛≥𝑚𝑓(𝑛) − 𝐿 < 𝜖. In particular, for 𝜖 = (𝛿 − 𝐿)/2 > 0
we have

sup
𝑛≥𝑚
𝑓 (𝑛) − 𝐿 < 𝛿 − 𝐿 (C.2)

or, equivalently, sup𝑛≥𝑚𝑓(𝑛) < 𝛿 for𝑚 ≥ 𝑀𝛿−𝐿. Moreover, for
all 𝑛 ≥ 𝑚 with 𝑚 ≥ 𝑀𝛿−𝐿, we have 𝑓(𝑛) < sup𝑛≥𝑚𝑓(𝑛) < 𝛿.
Therefore, ‖𝑃𝑛(𝑆0, 𝐸0, 𝐼0) − 𝑀𝑖‖ < 𝛿, ∀𝑛 ≥ 𝑀𝛿𝐿 .

We can take (𝑆10, 𝐸10, 𝐼10 ) = 𝑃𝑀𝛿−𝐿(𝑆0, 𝐸0, 𝐼0) as initial
condition and, therefore,󵄩󵄩󵄩󵄩󵄩𝑃𝑛 (𝑆10, 𝐸10, 𝐼10) −𝑀𝑖

󵄩󵄩󵄩󵄩󵄩 < 𝛿, ∀𝑛 ≥ 0, (C.3)

making our assumption valid.
So, we can assume without loss of generality that‖𝑃𝑚(𝑆0, 𝐸0, 𝐼0) − 𝑀𝑖‖ < 𝛿 for all𝑚 ≥ 0.

D. Expression (71)

From system (7) 𝑑𝐸/𝑑𝑡 = 𝛽(𝑡)𝑆𝑓(𝐼) − (𝜇 + 𝜎)𝐸, with 𝑆(𝑡) >𝑆(𝑡) − 𝜂 for 𝑡 > 𝑇, so𝑑𝐸𝑑𝑡 ≥ 𝛽 (𝑡) (𝑆 (𝑡) − 𝜂) 𝑓 (𝐼) − (𝜇 + 𝜎) 𝐸, for 𝑡 > 𝑇. (D.1)

Using assumption (A5) for 𝑓(𝐼) and positivity of 𝑆(𝑡) − 𝜂, we
have also 𝑓 (𝐼) (𝑆 (𝑡) − 𝜂)

≥ (𝑆 (𝑡) − 𝜂) [𝐼𝑓󸀠 (0) + 12𝐼2𝑓󸀠󸀠 (0)] . (D.2)

Therefore,𝑑𝐸𝑑𝑡 ≥ 𝛽 (𝑡) (𝑆 (𝑡) − 𝜂) [𝐼𝑓󸀠 (0) + 12𝐼2𝑓󸀠󸀠 (0)]− (𝜇 + 𝜎) 𝐸,= 𝛽 (𝑡) (𝑆 (𝑡) − 𝜂) 𝐼𝑓󸀠 (0)
+ 12𝛽 (𝑡) (𝑆 (𝑡) − 𝜂) 𝑓󸀠󸀠 (0) 𝐼2 − (𝜇 + 𝜎) 𝐸.

(D.3)

0 < 𝐼 < 𝛼 and 𝑓󸀠󸀠(0) ≤ 0, so 𝐼2 < 𝛼𝐼 and 𝑓󸀠󸀠(0)𝐼2 ≥ 𝑓󸀠󸀠(0)𝛼𝐼;
applying this we arrive at𝑑𝐸𝑑𝑡 ≥ 𝛽 (𝑡) (𝑆 (𝑡) − 𝜂) 𝐼𝑓󸀠 (0)+ 12𝛽 (𝑡) (𝑆 (𝑡) − 𝜂) 𝑓󸀠󸀠 (0) 𝛼𝐼,𝑑𝐼𝑑𝑡 = 𝜎𝐸 − (𝜇 + 𝜎) 𝐼.

(D.4)

This expression can be written as (71).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This article was supported in part by Mexican SNI under
Grants nos. 15284 and 33365.

References

[1] W. O. Kermack and A. G. McKendrick, “A contribution to the
mathematical theory of epidemics,” Proceedings of the Royal
Society A Mathematical, Physical and Engineering Sciences, vol.
115, no. 772, pp. 700–721, 1927.

[2] L. Wang, X. Zhang, and Z. Liu, “An SEIR Epidemic Model with
Relapse andGeneralNonlinear IncidenceRatewithApplication
to Media Impact,” Qualitative Theory of Dynamical Systems, pp.
1–21.

[3] V. Capasso and G. Serio, “A generalization of the Kermack-
McKENdrick deterministic epidemic model,” Mathematical
Biosciences, vol. 42, no. 1-2, pp. 43–61, 1978.

[4] Z. Bai, “Threshold dynamics of a periodic SIR model with
delay in an infected compartment,” Mathematical Biosciences
and Engineering, vol. 12, no. 3, pp. 555–564, 2015.

[5] Z. Bai and Y. Zhou, “Global dynamics of an SEIRS epidemic
model with periodic vaccination and seasonal contact rate,”
Nonlinear Analysis: Real World Applications, vol. 13, no. 3, pp.
1060–1068, 2012.

[6] A. Kaddar, S. Elkhaiar, and F. Eladnani, “Global Asymptotic
Stability of a Generalized SEIRS Epidemic Model,” Differential
Equations and Dynamical Systems, pp. 1–11.

[7] M. A. Khan, Y. Khan, Q. Badshah, and S. Islam, “Global stability
of SEIVR epidemic model with generalized incidence and pre-
ventive vaccination,” International Journal of Biomathematics,
vol. 8, no. 6, Article ID 1550082, 2015.

[8] M. A. Khan, Y. Khan, T. W. Khan, and S. Islam, “Dynamical
system of a SEIQV epidemic model with nonlinear generalized
incidence rate arising in biology,” International Journal of
Biomathematics, vol. 10, no. 7, Article ID 1750096, 2017.

[9] P. van denDriessche and J.Watmough, “Reproduction numbers
and sub-threshold endemic equilibria for compartmental mod-
els of disease transmission,”Mathematical Biosciences, vol. 180,
no. 1, pp. 29–48, 2002.

[10] L. Li, Y. Bai, andZ. Jin, “Periodic solutions of an epidemicmodel
with saturated treatment,” Nonlinear Dynamics, vol. 76, no. 2,
pp. 1099–1108, 2014.

[11] Y. Xu and L. Li, “Global exponential stability of an epidemic
model with saturated and periodic incidence rate,” Mathemat-
ical Methods in the Applied Sciences, vol. 39, no. 13, pp. 3650–
3658, 2016.
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