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1. Introduction

Denote by k a fixed ground field and let A be a finite-dimensional k-algebra. Given
a A-module G, recall that by definition the endolength G is its length as a right
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Enda (G)°P-module. The module G is called generic if it is indecomposable, of infinite
length as a A-module, but with finite endolength. The algebra A is called generically
tame if, for each d € N, there is only a finite number of isoclasses of generic A-modules
with endolength d. This notion was introduced and examined by W.W. Crawley-Boevey
in [8] and [9]. In this paper we continue our exploration of the notion of generic tameness
for finite-dimensional algebras A over perfect fields (see [2-4]). Our main results, stated
below, apply to generically tame finite-dimensional algebras A over a perfect (possibly
finite) field k. In order to state precisely and comment these results we need to recall
and introduce some terminology in the following definitions.

Definition 1.1. For any k-algebra B and M € B-Mod, denote by Ej; := Endg(M)°P its
endomorphism algebra. Then, M admits a structure of B-Fj;-bimodule. By definition,
the endolength of M, denoted by endol(M), is the length of M as a right Fj/-module.

A module M € B-Mod is called pregeneric iff M is indecomposable, with finite
endolength but with infinite dimension over the ground field k. The algebra B is called
pregenerically tame iff, for each natural number d, there are only finitely many isoclasses
of pregeneric B-modules with endolength d.

Definition 1.2. With the preceding notation, given M € B-Mod, write Dy, =
Ey/rad Epy and denote by Zj; the center of Djys. We shall say that the B-module
M is centrally finite iff Dy is a division ring and [Dys : Zps] is finite. In this case,
[Dar : Zy) = c?\/p for some positive integer cps. If M is centrally finite, the central
endolength of M is the number c-endol(M) = ¢y x endol(M).

The algebra B is called centrally pregenerically tame, if for each d € N there is
only a finite number of isoclasses of centrally finite pregeneric B-modules with central
endolength d.

Definition 1.3. Again with the preceding notation, a pregeneric B-module G is called
algebraically rigid if, for any algebraic field extension L of k, the BY-module G* is
pregeneric.

We say that a pregeneric B-module G is algebraically bounded iff there exists a finite
field extension F of k and a finite sequence of algebraically rigid pregeneric BF-modules
Gi,...,Gy suchthat GF 2 G @ --- & G,,.

An algebra B is called semipregenerically tame if for each d € N there is only a finite
number of isoclasses of algebraically bounded and centrally finite pregeneric B-modules
with central endolength d.

If B is a finite-dimensional algebra, the notion of pregeneric B-module coincides with
the usual notion of generic B-module. Hence, in this case we will eliminate the term
“pre” which appears in the preceding denominations.

In [4] we obtained for a finite-dimensional semigenerically tame algebra A over a
perfect field, parametrizations of the centrally finite algebraically bounded A-modules
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“up to a finite extension of the field k”. In the following definition we give a couple of
useful variations of the notion of wildness with a similar relaxation of the ground field.

Definition 1.4. If A and B are k-algebras, a k-functor F' : A- Mod — B-Mod is called
sharp (resp. endosharp) iff F' preserves indecomposables (resp. endofinite indecompos-
ables), isomorphism classes of indecomposables (resp. of endofinite indecomposables),
and induces isomorphisms Dy; = Dp(py), for each indecomposable (resp. endofinite in-
decomposable) A-module M, see [11, 4.1].

An algebra B over a field k is called sharply wild (resp. endosharply wild) iff there is a
B-k{zx,y)-bimodule Z, which is free of finite rank by the right and such that the functor
Z @piayy) — * k{z,y)- Mod — B-Mod is sharp (resp. endosharp).

An algebra B over a field k is called almost sharply wild (resp. almost endosharply
wild) iff there is a finite field extension FF of k such that B¥ is sharply (resp. endosharply)
wild.

Our main results are the following. Since generically tame finite-dimensional k-algebras
are centrally generically tame, they apply to finite-dimensional generically tame algebras
over perfect fields.

Theorem 1.5. Let A be a finite-dimensional algebra over a perfect field, then A is centrally
generically tame iff A is not almost sharply wild iff A is not almost endosharply wild.

The preceding result together with Theorem (7.1) can be considered as a generaliza-
tion of the celebrated Tame and Wild Theorem of Drozd (see [10] and [7]), to the perfect
ground field case.

Theorem 1.6. Assume that A is a finite-dimensional algebra over a perfect field. Then, A
s centrally generically tame iff A is semigenerically tame. Moreover, if A is semigener-
ically tame and G is a generic A-module, then G is centrally finite iff G is algebraically
bounded.

Given a finite-dimensional algebra A over a perfect field k, it is clear that A is cen-
trally generically tame whenever it is generically tame, and that A is semigenerically
tame whenever it is centrally generically tame. We do not know whether the former
implication can be reversed. The notions of central finiteness and algebraic boundedness
were introduced in [11], where the equivalence A semigenerically tame iff A¥ is gener-
ically tame, where K is the algebraic closure of k, is established. We do not know if
centrally finite generic modules coincide with generic modules in the general case of a
generically tame A.

A well known conjecture by Crawley-Boevey (see [9, 7.2 and 7.4]) asserts (if we restrict
it to our context of a finite-dimensional algebra A over a perfect field) that A is either
generically tame or generically wild, and not both. It includes the weaker conjecture
that A can not be simultaneously generically tame and generically wild. We remark
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that this last weaker statement is equivalent to the following: Every generic module
over a generically tame finite-dimensional algebra A is centrally finite. Indeed, this is a
consequence of the following fact pointed out by Crawley-Boevey in [9]: Given a generic
A-module G, we have that Endy(G) is a PI ring iff D¢ is finite-dimensional over its
center; thus G is centrally finite iff Enda(G) is a PI ring.

Once our Theorem (1.6) is proved, we can look and compare the parametrizations
given in [4, 1.8] and (7.1). The latter one is given over rational algebras, while the former
one is given over polynomial algebras. We stress the fact that, even though these theorems
are both proved using matrix problems techniques, the proofs are quite different. The
scheme of the proof of (7.1) is closer to the one followed for the proof of Drozd’s theorem
in [7] and [10].

The proofs of our main results for algebras rely on the theory of differential tensor
algebras (ditalgebras for short) and reduction functors first developed by the Kiev School
of representation theory of algebras. For the general background on ditalgebras and their
module categories, we refer the readers systematically to [5]. We tried to give precise
references for the basic terminology and ditalgebra constructions.

2. Central pregeneric tameness

In this section, we recall from [4] and [6] the notion of semipregeneric tameness for
layered ditalgebras. We introduce the notion of central pregeneric tameness for layered
ditalgebras. Then, we recall results from [4], with minor adaptations, which will be used
later.

Definition 2.1. Let A be a layered ditalgebra, with layer (R, W), see [5, §4]. Given M €
A-Mod, denote by Ejp := End4(M)°P its endomorphism algebra. Then, M admits a
structure of R-Ejs-bimodule, where m-(f9, f1) = f%(m), for m € M and (f°, f!) € Ep;.
By definition, the endolength of M, denoted by endol(M), is the length of M as a right
FEpr-module.

A module M € A-Mod is called pregeneric iff M is indecomposable, with finite
endolength but with infinite dimension over the ground field k. A layered ditalgebra A
is called pregenerically tame iff, for each natural number d, there are only finitely many
isoclasses of pregeneric A-modules with endolength d.

Definition 2.2. Given a layered ditalgebra A and M € A-Mod, write Dy; = Ep;/rad Epy
and denote by Z,; the center of Djy;. We shall say that the A-module M is centrally
finite iff D)y is a division ring and [Dys : Zyy] is finite. In this case, [Dys @ Zy] = ¢y,
for some positive integer cp;. If M is centrally finite, the central endolength of M is the
number ¢-endol(M) = ¢y x endol(M).

A layered ditalgebra A is called centrally pregenerically tame, if for each d € N there
is only a finite number of isoclasses of centrally finite pregeneric A-modules with central
endolength d.
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Notice that every finite-dimensional indecomposable M over a Roiter ditalgebra A,
with layer (R, W) such that W is a finitely generated R-R-bimodule, is centrally finite,
see [5, 5.12].

Definition 2.3. Given a layered ditalgebra A and a pregeneric A-module G, we say that
G is algebraically rigid if, for any algebraic field extension L of k, the A“-module G* is
pregeneric.

We say that a pregeneric A-module G is algebraically bounded iff there exists a finite
field extension I of k and a finite sequence of algebraically rigid pregeneric AF-modules
Gi,...,G,suchthat GF =2 G @ --- & G,,.

A layered ditalgebra A is called semipregenerically tame if for each d € N there is
only a finite number of isoclasses of algebraically bounded centrally finite pregeneric
A-modules with central endolength d.

In the following, we enumerate a series of lemmas which are adaptations of the state-
ments [2, 2.2-2.7].

Lemma 2.4. Assume that £ : A—— A’ is a morphism of layered ditalgebras and consider
the functor Fe : A'-Mod —.A-Mod induced by restriction using the morphism . For
M e A'-Mod, we have endol(F¢(M)) < endol(M). Moreover:

1. If F¢ is full and faithful, it preserves centrally finite modules and, for a centrally
finite M € A’-Mod, we have c-endol(F¢(M)) = c-endol(M);

2. If the morphism & = ¢ ® 1, : A —— A" induces a full and faithful functor Feu:
AT-Mod —AL-Mod, for any algebraic field extension L of k, then Fe preserves
pregeneric modules, algebraically rigid pregeneric modules, and algebraically bounded
pregeneric modules. In this case, the ditalgebra A’ is centrally pregenerically tame
whenever A is so;

3. In addition to the assumptions of 2, suppose that A and A’ are seminested, as in [5,
23.5]. Then, F¢ reflects pregeneric modules, algebraically rigid pregeneric modules,
and algebraically bounded pregeneric modules.

Proof. Item (1) and the first statement of (2) belong to [4, 2.6]. Ttem (3) admits es-
sentially the same proof that [4, 2.6(3)], where we use that seminested ditalgebras are
always Roiter ditalgebras (hence [5, 29.4] can still be applied). O

Reminder 2.5. Following [5], given a ditalgebra A = (T,4), we denote with a roman
A the subalgebra [T]o of degree zero elements of the underlying graded algebra T
of A, see [5, §1]. Then, the categories A-Mod and A-Mod share the same class of
objects, but there are more morphisms in A- Mod. There is a canonical embedding
L4 : A-Mod ——A-Mod which is the identity on objects and L4(f°) = (f°,0) for
any f° € Hom4(M, N).
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We recall some terminology from [5] and [1]. Let A = (T,0) be any ditalgebra with
layer (R,W). Assume we have an R-R-bimodule decomposition Wy = Wj @ W' with
§(W§) = 0. Consider the subalgebra T of T generated by R and W' = W/, and the
subalgebra B of A generated by R and W{. Then, the differential 6 on T restricts to a
differential ¢’ on the algebra 7" and we obtain a new ditalgebra B = (7”,§’) with layer
(R, W'). A layered ditalgebra B is called a proper subalgebra of A if it is obtained from an
R-R-bimodule decomposition of W as above. The ditalgebra B is essentially an algebra,
and the module categories B- Mod and B-Mod are canonically identified through the
functor Lg : B- Mod —B- Mod.

A proper subalgebra B of a triangular ditalgebra A is called initial when W coincides
with one of the terms of the triangular filtration of Wy, see [5, 14.8].

When B is a proper subalgebra of A, the projection 7 : T——T" yields a morphism
of ditalgebras 7 : A——B, hence an extension functor E := F, : B-Mod — A- Mod.

Lemma 2.6 (//, (2.8)]). Assume that B is a proper subalgebra of the layered ditalgebra A
and consider the extension functor E : B-Mod —.A-Mod. Then,

1. The functor E preserves isoclasses and indecomposables. Moreover, for any M €
B-Mod, we have endol(E(M)) = endol(M).

2. The functor E preserves pregeneric modules, algebraically rigid pregeneric modules,
and algebraically bounded pregeneric modules.

3. If A is a Roiter ditalgebra, then M € B-Mod is centrally finite if and only if E(M) €
A-Mod is so and, in this case, c-endol(E(M)) = c-endol(M).

Remark 2.7. Given a seminested ditalgebra A over a field k, we shall consider the five
basic operations A — A*, where z € {d,a,r,e,u}, called deletion of idempotents as in
[5, 23.14], regularization of a solid arrow as in [5, 23.15], absorption of a loop as in 5,
23.16], reduction of an edge as in [5, 23.18] and unravelling of a loop as in [5, 23.23], and
their corresponding reduction functors F* : A*- Mod —.A- Mod. The functor F* is full

and faithful (by [5, 8.17, 8.19, 8.20], for z € {a,d,r}, and by [5, 13.5], for z € {e, u}).

Lemma 2.8. Let A be a seminested ditalgebra over a field k. Suppose that A* is obtained
from A by some basic operation of type z € {a,r,d}. Then, A® is a seminested ditalgebra
and we have:

1. The functor F* preserves endolength, central endolength, pregeneric modules, al-
gebraically rigid pregeneric modules, and algebraically bounded pregeneric modules.
Thus, A* is centrally pregenerically tame whenever A is so.

2. The functor F* reflects pregeneric modules, algebraically rigid pregeneric modules,
and algebraically bounded pregeneric modules.

Proof. (1) This belongs to [4, 2.9 and 2.10].
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(2) In case z = a, F* is the identity functor and our claim is clear. For z € {d,r}, we
need to keep in mind that A* is seminested, in order to apply (2.4)(3) to the canonical
projection ¢ : A—— A%, since F* = Fe. O

Lemma 2.9. Let A be a seminested ditalgebra over a perfect field k with layer (R,W). Let
AX be the layered ditalgebra obtained from A by reduction, using a complete triangular
admissible B-module X, for some proper subalgebra B of A, and consider the associated
full and faithful functor Fx : AX-Mod —A-Mod, see [5, 12.10 and 13.5]. Suppose
that the layer (S,WX) of AX is seminested and that, for each algebraic field extension
L of k, the B-module X extends to L, as in [5, 20.8], and the admissible B*-module X™
is complete. Then,

1. For all N € AX-Mod, we have that N is centrally finite iff Fx(N) is so and, in this

case,

c-endol(N) < c-endol(Fx (N))
c-endol(Fx (N)) < rank Xg X c-endol(N)

2. The functor Fx preserves and reflects pregeneric modules, algebraically rigid pre-
generic modules, and algebraically bounded pregeneric modules.

Proof. Without the “c¢”, statement (1) follows from [5, 25.7], taking E = End 4x (N)°P.
Our assumption requiring that for each algebraic field extension L of k we have that
X = XU is complete gives that Fg: ALX"Mod — AL~ Mod is full and faithful.
The proof of (2) is similar to the proof of [4, 2.11]: we use [5, 20.11] and the fact that
seminested ditalgebras are Roiter ditalgebras in order to permit the application of [5,
29.4]. O

Remark 2.10. The last lemma applies to the functor F# : A*- Mod —.A- Mod, when A
is a seminested ditalgebra over a perfect field k and 4% is obtained from .4 by some basic
operation of type z € {e,u}, see [5, 23.18] and [5, 23.23]. We use [5, 20.9] to guarantee
that the B-module X associated with each one of these reductions extends to I, for each
algebraic field extension L of k.

Let us recall some usual notation.

Notation 2.11. Given a finite-dimensional algebra A over any field k, denote by P(A) the
category of morphisms between projective A-modules. If we write J := rad A, then P*(A)
denotes the full subcategory of P(A) whose objects are the morphisms « : P——@Q with
image contained in J@Q, and P?(A) denotes the full subcategory of P'(A) whose objects
are the morphisms « : P—— (@ with kernel contained in JP. If A splits over its radical,
we can consider the Drozd’s ditalgebra D = D?, as in [5, 19.1], and the usual equivalence
functor Z, : D-Mod ——PL(A), see [5, 19.8].
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Lemma 2.12 (//, (2.1/)]). Given a finite-dimensional algebra A, over any field k, which
splits over its radical, consider the Drozd’s ditalgebra D = D*, the usual equivalence
functor Z5 : D-Mod —P(A), and the cokernel functor Cok : PL(A)——A-Mod.
Assume that N € D-Mod and M € A-Mod are such that Z5(N) € P*(A) and M =
Cok Zp(N). Then,

1. The D-module N is centrally finite iff the A-module M is so. In this case, we have
the following inequalities:

c-endol(N) < (1 4 dimy A) X c-endol(M)
c-endol(M) < dimy A x c-endol(N)

2. If k is perfect, the module N is an algebraically rigid (resp. algebraically bounded)
pregeneric D-module iff the module M is an algebraically rigid (resp. algebraically
bounded) generic A-module.

Corollary 2.13. Let A be a finite-dimensional algebra over a perfect field k. Then, the alge-
bra A is centrally generically tame iff its Drozd’s ditalgebra D is centrally pregenerically
tame.

Proof. Similar to the proof of [2, 4.5], using (2.12) instead of [2, 4.4]. O
3. Constructibility and wildness

In this section we consider a special type of ditalgebras, which can be constructed
from finite-dimensional algebras over perfect fields. We show some properties of their
pregeneric modules which follow from the corresponding properties for generic modules
over finite-dimensional algebras. Then, we consider the notions of sharp wildness and
endosharp wildness for layered ditalgebras and we show some examples.

Definition 3.1. Let A = (T, 9) be a triangular ditalgebra with layer (R, W) over a field k.
Assume that W is finitely generated as an R-R-bimodule. Then, A is called elementary
iff R= k x--- Xk, a finite product of copies of the field k. The ditalgebra A is called
semielementary iff R = M, (k) X --- x M,,(k), a finite product of matrix algebras over
the field k.

Remark 3.2. Assume that A is a finite-dimensional algebra over a perfect field k. Then,
we have a splitting A = S @ J over its radical J, and we can consider the corresponding
layered ditalgebra Dy, see [5, 19.1]. Since k is perfect, there is a finite field extension L
of k such that (Dy)" is semielementary, then we can consider its basification (D)™, as
in [2, 3.3], which is an elementary ditalgebra (in particular, a seminested ditalgebra).
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Definition 3.3. Given a perfect field k£ and a finite field extension IL of k, a seminested
L-ditalgebra A is called L-constructible iff for some finite-dimensional k-algebra A we
have that the scalar extension D of the Drozd’s ditalgebra D = D, is semielementary
and there is a finite sequence of reductions

DLb rD]Lbzl rD]Lbzl 2o . DILbzl---Zt

)

and there is an isomorphism of layered ditalgebras D“*1#t = A for some finite set of
reductions DH0#1#i-1  DLbz1-2 of either of the types: absorption of a loop as in
[5, 23.16], deletion of idempotents as in [5, 23.14], regularization as in [5, 23.15], edge
reduction as in [5, 23.18], and unravelling as in [5, 23.23]. In this case, we also say that
A is L-constructible from A.

Lemma 3.4. If a seminested ditalgebra A is L-constructible (from some finite-dimensional
k-algebra A) over the perfect field k, then AY is F-constructible (from the same
k-algebra A) for any finite field extension F of L.

Proof. Recall first that given a seminested ditalgebra B over a perfect field L, a finite field
extension F of the field L, and z € {a,r,d, e, u}, we have from [5, 20.4, 20.5, 20.6, 20.7,
20.11] and (2.10) the existence of an isomorphism of layered ditalgebras &, : B¥* ——B*F,
which we shall consider an identification. We also need to keep in mind the meaning of
the basification of a semielementary ditalgebra B = DA with layer (R, W) such that
R M,, (L)x---xM,,(L); here B> = BX where X is the direct sum X = X; ®---®X;,
where each X is a representative of the simple M, (IL)-module, see [2, 3.3, hence RF =~
M, (F) x -+ x My, (F), and X¥ = X7 @ --- @ X}, where each X}F is a representative
of the simple M, (F)-module. Thus we have the basification B* — B** = BFX) and
this last ditalgebra is canonically identified with B = (BX)F, see [5, 20.11]. Then, from
the sequence in the Definition 3.3, after a scalar extension by F, we obtain the following
sequence of ditalgebras and reductions:

12

D]Lb]F D]LbzllF .. D]Lbz1 cez IF A]F

D]Fb — D]szl _ ... — D]szl“‘zt A]F

1

Thus, the seminested F-ditalgebra A is F-constructible from the finite-dimensional
k-algebra A.

Notice that the basification functor F? = FX : (DAL)I’— Mod ——DA - Mod induces
when extended to F the basification functor F? : (DAF)Z’— Mod —DA - Mod (modulo
the identifications pointed out above). 0O

Theorem 3.5. Assume that A is an LL-constructible seminested ditalgebra over a perfect
field k. Then, for any pregeneric A-module G, the algebra End 4(G) is local and has
nilpotent radical.
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Proof. This proof is similar to the proof of [3, 2.6]. We give the details. From [9, 4.2 and
4.4], the generic A-modules have local endomorphism algebras with nilpotent radical.
Adopt the notation of Definition (3.3). From [5, 20.13], we can identify the L-ditalgebra
(DME with DA". Then, we can proceed as in the proof of [3, 2.6], to show that any
pregeneric D*-module G, the algebra End(pay.(G) is local and has nilpotent radical.
From [2, 3.3], we have the corresponding statement for (D¥)?, where D := DA,

Consider the isomorphism of layered ditalgebras ¢ : DM#1% 5 A as an iden-
tification and, for ¢ € [1,¢], consider the corresponding reduction functor Fj
plbz1zi_ Mod ——DM#1*%i-1_ Mod. Then, the composition

F\Fy - F : A-Mod ——D™-Mod

is a full and faithful functor which preserves pregeneric modules. Indeed, this is the case
for each one of the factors, for instance, by (2.8) and (2.10). O

Proposition 3.6. Let A be an L-constructible seminested ditalgebra over a perfect field k
and take any field extension F of L. Assume that M, N € A-Mod satisfy that M* and
NT have a common non-zero direct summand. If M is an endofinite indecomposable,
then M is a direct summand of N in A-Mod.

Proof. This proof is similar to the proof of [3, 3.4]: first notice that Lemmas 3.2 and 3.3
in [3] hold (with almost the same proofs: we just have to replace the chosen k-basis for Z
by a finite generating set of the R-module Zj) if we substitute in the hypothesis “almost
admissible” by “seminested”. Then, if M has infinite dimension, we can apply (3.5); if
M is finite-dimensional, we can apply [5, 5.12]. O

Definition 3.7. Let A and B be layered ditalgebras over any field k. Then, a k-functor
F : A-Mod —B-Mod is called sharp (resp. endosharp) iff F' preserves indecompos-
ables (resp. endofinite indecomposables), isomorphism classes of indecomposables (resp.
of endofinite indecomposables), and induces isomorphisms Djy; = Dpgyy, for each inde-
composable (resp. endofinite indecomposable) A-module M.

A layered ditalgebra A over a field k is sharply wild (resp. endosharply wild) iff there
is an A-k(x,y)-bimodule Z, which is free of finite rank by the right and such that the
following composition functor is sharp (resp. endosharp)

ZQRk(z.y) —
e T A Mod —E45 A-Mod |

k(x,y)- Mod
We say that the bimodule Z realizes the sharp wildness (resp. realizes the endosharp
wildness) of A. A layered ditalgebra A over a field k is called almost sharply wild (resp.
almost endosharply wild) iff there is a finite field extension I of k such that AF is sharply
wild (resp. endosharply wild).
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Remark 3.8.

1. Any composition of sharp (resp. endosharp) functors is sharp (resp. endosharp).

2. Every sharp functor F' : B- Mod —.A- Mod preserving endofinite indecomposables
is endosharp. In particular, any full and faithful k-functor F' : B- Mod —A- Mod
preserving endofinite modules is endosharp. This is the case of every reduction func-
tor F* : A*-Mod —A-Mod of type z € {a,r,d,e,u}, by (2.4), (2.7), (2.8), and
(2.10).

Lemma 3.9. Any sharply wild (or endosharply wild) layered ditalgebra A over a perfect
field is not centrally pregenerically tame.

Proof. This proof is essentially the same that the proof of [2, 2.9], since the functor
considered there is sharp (resp. endosharp). O

Lemma 3.10. Assume that B is a proper subalgebra of the Roiter ditalgebra A. Then, the
corresponding extension functor E : B-Mod —A-Mod is sharp and endosharp.

Proof. This follows from [11, 4.4] and (2.6). O

Lemma 3.11. Assume that the seminested ditalgebra A* is obtained from the seminested
ditalgebra A by a basic operation of type z € {a,r,d,e,u}. Then, if A* is almost sharply
wild (resp. almost endosharply wild), so is A.

Proof. We show first that if A* is sharply (resp. endosharply) wild, so is 4. Assume, A*
is sharply (resp. endosharply) wild, so there is an A*-k(x, y)-bimodule Z, which is free
of finite rank as a right k(x,y)-module, such that the following composition functor is
sharp (resp. endosharp):

ZQ@k(x,y) — 2
e T A7 Mod £A% A%~ Mod .

k(x,y)- Mod

For z € {a,r d}, the canonical morphism of ditalgebras ¢ : A——A* induces by

restriction the full and faithful functor F'* = F, : A*- Mod —.A-Mod. By [5, 5.12], F'?

preserves indecomposability and isomorphism classes. From [5, 22.7], we know that the
following diagram commutes up to isomorphism

Z - z
k{x,y)-Mod ———  A*-Mod LA A2 Mod
| Fy

Fo(Z)®k(z,yy —
Y

k(x,y)- Mod A-Mod 2 A-Mod.

Hence, the lower composition of functors is sharp (resp. endosharp) and we just have to
notice that the A-k(x,y)-bimodule F,;(Z) is free of finite rank as a right k(x, y)-module.



12 R. Bautista et al. / Journal of Algebra 464 (2016) 1-35

For z € {e,u}, A? is defined as a ditalgebra AX obtained from A by reduction using
a special type of complete B-module X, for a suitable initial subalgebra B of A. By
(5, 13.5] the functor F* = F¥X is full and faithful. Then, again from [5, 5.12], we know
that F* is sharp and we proceed as before. We recall that F'*(Z) is finitely generated
projective as a right k(z, y)-module and hence, from [5, 22.6], also free.

Now, assume that A is almost sharply wild (resp. almost endosharply wild), so there
is a finite field extension F of k such that A*F is sharply wild (resp. endosharply wild).
Then, recall that from [5, 20.4, 20.5, 20.6, 20.11], we can identify A** with A¥*. Then,
the preceding statement applied to the seminested F-ditalgebra AF, gives that AF is
sharply wild (resp. endosharply wild), and we are done. O

Proposition 3.12. Assume that we have non-scalar elements f(x) € k[z] and g(y) € k[y].
We say that an element r(x,y) € k[x,y]fz)g(y) admits an f(x)g(y)-zero iff there exist
A € k with f(A) #0, g(u) # 0, and r(A\, u) = 0. The following hold.

1. Any element r(z,y) € K[, y]t@)g(y) \ {0} can be written as r(v,y) = uro(x,y),
where ro(z,y) € klx,y] has no irreducible factor in common with f(x)g(y) and u is
an invertible element in k[T, Y] f(z)g(y)-

2. Any r(2,y) € k[2,Y]f(2)9(y) which admits an f(x)g(y)-zero must be a non-invertible
element in k[, Y] f(z)g(y)-

3. Given a non-zero r(x,y) € k[x,ylf()g(y), there is either a finite field extension Fy
of k such that r(z,y) is invertible in F[x,y] t(2)q(y) for any finite field extension F of
Fo, or else there is a finite field extension Ty of k such that r(x,y) € F[x,y])q(y)

admits an f(x)g(y)-zero for any finite field extension F of Fy.

Proof. (1) and (2) are taken from [5, 24.4].

(3) Let K be an algebraic closure of k. If r(x,y) is invertible in K[z, y]t(1)4(,) then
r(x,y)s(z,y) = 1, for some s(x,y) € K[z, Y] f(2)4(y)- Then, there is a finite field extension
Fo of k such that s(z,y) € Folx, Y] ¢(2)g(y)» and 7(z,y) is invertible in F[z, y] r(z)g(,) for
any finite field extension F of Fy.

If r(z,y) is not invertible in K[z, y]¢(2)g(y), We can apply (1) and write r(z,y) =
urg(z,y), where ro(z,y) € K[z,y] has no irreducible factor in common with f(x)g(y)
and v is an invertible element in K[z, y] f(2)4(y)-

For any h € K[z,y|, we write Z(h) := {(\,u) € K* | h(\, ) = 0}. Then, from
Bezout’s theorem, we know that the set Z(ro(z,y)) () Z(f(x)g(y)) is finite.

Given (\, ) € K2, it is clear that f()\) # 0 and g(u) # 0 iff (A, u) & Z(f(x)g(y)).

Since K is algebraically closed, ro(z,y) has infinitely many zeros (A, ) € K2, and we
can choose such a zero (A, 1) in K2\ [Z(ro(z,y)) N Z(f(x)g(y))]- Then, we can take the
finite field extension Fy = k(A u,c1,...,c;) of k, where ¢q,...,¢c, € K are the algebraic
elements present in u and rg. O
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Theorem 3.13. Critical ditalgebras, as defined in [5, 2/.5] over any field, are sharply wild
and endosharply wild.

Proof. For sharp wildness this was already noticed in the proof of [11, 4.6] for alge-
braically closed fields. The argument in the general case is the same. Namely, let C be
a critical ditalgebra over a field k. Review carefully the development of [5, §24] and no-
tice that it already contains the construction of a C-k(x,y)-bimodule By such that the
functor L¢(Bo ®k(a,y) —) : k{x,y)- Mod ——C- Mod is sharp and endosharp: the functor
that produces the wildness of the star algebra in [5, 30.2] is full and faithful, and for
the extension functor involved we apply (3.10). Also, By is free of finite rank as a right
module, see [5, 22.7]. O

Corollary 3.14. Assume that A is a seminested ditalgebra, over any field k, with differ-
ential § and layer (R, W). The following hold.

1. If 6(a) = 0 for some solid arrow o with either Reyq) # k or Reyqoy 2 k, then A is
almost sharply wild and almost endosharply wild.

2. If (o) = cv, for some solid arrow «, some dotted arrow v, and some non-zero
element c € C := Rey (o) @k Reg(q), where Rey o) # k and Regyo) # k, then either A
1s almost sharply wild and almost endosharply wild or there is a finite field extension
Fo of k such that for any finite field extension F of Fy, the element c® 1 is invertible
in C¥ and F(a®1) = (c®@1)(v®1).

Proof. After deleting all the vertices of A different from ¢(«) and s(«), if necessary,
and using (3.11), we can assume that A has only the points ¢(a) and s(«) (which may
coincide). In case I, there is a finite field extension F of k such that A" is a critical
ditalgebra of one of the types (3) or (4) listed in [5, 24.5]. Thus, in this case A is almost
sharply wild and almost endosharply wild. In case 2, by (3.12), either there is a finite
field extension F of k such that A" is a critical ditalgebra of one of the types (1) or (2)
listed in [5, 24.5], hence A is almost sharply wild and almost endosharply wild, or we
are in the situation described in the second part of item 2. 0O

4. Central endolength and scalar extension

In this section we recollect some facts on the behavior of the central endolength of
centrally finite endofinite indecomposable modules over constructible ditalgebras, under
finite field extension. They are obtained from the corresponding statements for finite-
dimensional algebras proved in [11].

Theorem 4.1. Let A be a seminested ditalgebra with layer (R,W), over a perfect field
k, and M a finite-dimensional indecomposable A-module. Then, there is a Galois field
extension Foy of k such that, for any Galois field extension F of Fy, we have that the
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decomposition MF = M, @ ---® M, of M¥ as direct sum of indecomposables in AF-mod
satisfies Dy, = F and endol(Mj) = c-endol(M;) = c-endol(M), for all j € [1,t].
Moreover, if e € R is any idempotent, ef = e ® 1 is the induced idempotent in RF, and
j € [1,t], we have (B, (eFM;) = car x L, (eM).

Proof. This proof is similar to the proof of [4, 4.10(1)]. We need to have in mind that
endomorphism algebras of finite-dimensional .A-modules are local finite-dimensional be-
cause A is seminested and we have [5, 5.13]. We also use that the canonical map
a: (Ep)f——E,+ is an isomorphism of algebras, see [4, 4.12]. O

Definition 4.2. Assume that A is a seminested ditalgebra with layer (R, W) and let
1 = >" e be the decomposition of the unit of R as a sum of centrally orthogonal
primitive idempotents. Then, for M € A- Mod, the support of M is the set of idempotents
e; with e;M # 0. The A-module M is called sincere iff e, M # 0, for all i € [1,n].
Define the endolength vector of M by £6(M) = (£5(M),. .., L5(M)), where £5(M) =
lg,, (e; M), for i € [1,n]. If M is centrally finite, define the central endolength vector of
M by c-£°(M) = epr x £°(M). Thus the endolength and the central endolength of M
are, respectively, endol(M) = Y7 | £5(M) and c-endol(M) = > | c-5(M).
Corollary 4.3. Assume that A is a seminested ditalgebra over a perfect field k. Then, for
any finite-dimensional indecomposable A-module M and any finite field extension L of
k, in the decomposition M™ = M, @ --- ® M, of the A¥-module M™ as a direct sum of
indecomposables, we have that c-endol(M) = c-endol(M;) and c-£°(M) = c-£°(M;), for
all j € [1,1].

Proof. This proof is similar to the proof of [4, 4.11], where we use (4.1) instead of [4,
4.10]. Similarly, the equality on the central endolength vectors follows from (4.1) when
applied to the idempotents eq,...,e, as in the last definition, first for a Galois field
extension of F of k containing L, then to the Galois field extension F of L, and then
comparing the indecomposable modules appearing in both applications. 0O

Proposition 4.4. Assume that A is an L-constructible seminested ditalgebra over a perfect
field k. Let G be a pregeneric A-module and F a finite field extension of .. Then

1. GF2miGi @ - ®&mGy, where mi,...,m; € N and G, ...,Gy are pairwise non-
isomorphic pregeneric A¥-modules.

2. The module G is centrally finite iff G; is centrally finite for some j € [1,t]. In this
case we also get that

dimy, (Dg) = m? x dimz, (Dg,), for eachi € [L,1].

Proof. Since A is [L-constructible from a finite-dimensional k-algebra A, there is a functor
F : A-Mod —(Dx)"-Mod, given as a composition of functors of type F¢, F¢, F" F¢,
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F*, F¢ associated to the basic operations: absorption of a loop, deletion of idempotents,
regularization of an arrow, edge reduction, and unravelling, or replacement of a layered
ditalgebra by an isomorphic one, see (3.3) and (2.4). From [5, 20.4, 20.5, 20.6, 20.11,
20.12, and 20.13], we have the following diagram which commutes up to isomorphism,

Cok =

A -Mod T (Dpe)l-Mod 5 Dye-Mod 54 AF_Mod

(-)F ‘ (-)F

Cok 2,1

A-Mod 5 (Dy)-Mod 5 Dyi-Mod AL-Mod

where F is the composition of the functors induced by the functors appearing in the
factorization of F: they are again of type F¢, F¢ F", F¢ F" or Fg, and F is the
corresponding basification equivalence. They all preserve pregeneric modules. Moreover,
Fe, I @ and F" preserve central endolength, and F*, F¢, F’ behave towards central
endolength as described in (2.9).

Let G be a pregeneric A-module, then H := Cok Z,. F*F(G) is a generic A“-module
and, applying [11, 2.18(b) and 2.14(c)], we get H* = miH; @ --- ® myH;, for some
mi,...,m; €N and some pairwise non-isomorphic generic AF-modules Hy, ..., H,.

Since Cok Z,r FPF(GF) = [Cok EALFbF(G):I]F ~ HF using that the functor
Cok EAFFEﬁ reflects isomorphisms and [5, 29.4], we get AF-modules Gy, ...,G; with
G* =2 mG,® - ®mG; and CokEAmFEﬁ(Gj) = H;, for each j € [1,t]. Then, using
that the functors F'* reflect pregeneric modules, we know that each G; is pregeneric,
and we have proved (1).

We also know from [11, 2.18(b)| that H is centrally finite iff H; is so for some j.
Then, using the fact that the functor Cok = r FYF is sharp, because it is a composition

of sharp functors, we know that G is centrally finite iff H is so, iff H; is so, iff G} is so.

2

The formula dimz,, (D) = m;j x dimg, (Dp,) for each i, established in the proof of

[11, 2.18], gives the formula in (2) using again that the functor Cok Zxr FFis sharp. O

Proposition 4.5. Assume that A is an LL-constructible seminested ditalgebra over a per-
fect field, let F be a finite field extension of L, and consider the corresponding scalar
restriction functor Fg : A¥-Mod —.A-Mod. Let H be a pregeneric A¥-module. Then

1. Fe(H) = H, ®--- ® Hy, where Hy,...,H; are pregeneric A-modules.
2. There is ig € [1,t] such that the module H is a direct summand of Hy,.

Proof. This proof is similar to the previous one, but we use scalar restrictions instead of
scalar extensions. Namely, we consider the following diagram which, by [4, §3], commutes
up to isomorphism
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a b Cok = ,\r
AF-Mod —E5  (Dpr)-Mod - Dpe-Mod A% AF-Mod
Fe Fe,

b Cok =
A-Mod -5 (Dp)-Mod 5 Dp-Mod ———2%  AL-Mod

where F and F are compositions of functors of type F*, where z € {a,r,d,e,u} or
induced by isomorphisms of layered ditalgebras, F® and Fb are the corresponding basi-
fication equivalences, and Fg, is the restriction functor. All the functors represented by
horizontal arrows in the diagram preserve and reflect pregeneric modules.

Let H be a pregeneric AF-module, then G := Cok Zr FBF(H) is a generic A¥-module
and, applying [11, 2.15], we get F¢, (G) 2 G1 & -+ & Gy, for some generic Ab-modules
Gq,...,G¢, and G is a direct summand of G]fo for some iy € [1,1].

Since Cok Ep.FPFFe(H) = Fg, CokZ5r FPF(H) = Fe,(G), using that the functor
Cok ZpLFPF reflects isomorphisms and [5, 29.4], we get A-modules Hy,..., H; with
Fe(H)=2 Hi®---@® H; and Cok =, FPF(H;) = G, for each j € [1,t]. Then, using that
the functors F'* reflect pregeneric modules, we know that each H; is pregeneric, and we
have proved (1).

If we write & = Cok EAIFFZ;ﬁ7 from the diagram in the last proof, we know
that @(HE) ) = G[,;FO. Since G is a direct summand of G]fo, there are morphisms s :
®(H)—®(H} ) and p : ®(H; )—®(H) such that ps is an isomorphism. Then, there
are morphisms s’ : H—>Hi»FU and p’ : HE] ——H such that p's’ is an isomorphism. So H
is a direct summand of HE) ..o

Theorem 4.6. Let A be an L-constructible seminested ditalgebra over a perfect field k, G
an endofinite indecomposable A-module, and F a finite field extension of L. Then GF =
m1Gy D - D myGy, where mq,...,my € N and Gq,...,G; are pairwise non-isomorphic
endofinite indecomposable A¥-modules. Moreover,

1. The A-module G is pregeneric iff each A% -module G; is so.
2. The module G is centrally finite iff each G is so and, in this case,

c-endol(G;) = c-endol(G) and c-L°(G;) = c-L° (G) for each j € [1,t].

Proof. If GG is an endofinite indecomposable .A-module, then either G is finite-dimensional
or G is pregeneric. Then, we obtain the wanted decomposition G¥ =2 m G, @ --- & m;Gy,
for instance, from (4.3) and (4.4). Now, (1) is clear if we keep in mind (4.4)(1).

From [4, 4.12], (3.5), and [4, 4.9(1)], we have endol(G;) = m; x endol(G), for each
j € [1,t]. Then, in case G is pregeneric, we get from (4.4)(2), that G is centrally finite
iff each G, is so, and in this case ¢- endol(G) = c-endol(G,) for each j € [1,t]. In case G
is finite-dimensional, the corresponding statement follows from (4.3).

Since A is seminested, we have the canonical decomposition 1 = Z?:l e; as sum of
centrally primitive orthogonal idempotents of R (where (R, W) is the layer of A), and
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then 1 =", eIiF, where eIiF = ¢; ® 1, is the corresponding canonical decomposition of

the unit of R (where (RY, W¥) is the layer of A¥). Then, from [4, 4.9] and (4.4)(2), we
obtain when G is centrally finite that c-£° (G;) = ¢-£° (G) for each j € [1,t]. O

Definition 4.7. Given a seminested ditalgebra A and a positive integer d, we consider the
class M4(d) formed by all the finite-dimensional indecomposable A-modules M such
that c-endol(M) < d. We will also consider the class H 4(d) formed by all the centrally
finite pregeneric A-modules H such that c-endol(H) < d.

Corollary 4.8. Let A be an L-constructible seminested ditalgebra over a perfect field and
F a finite field extension of L. Then, for any d € N, H 4r(d)/ = is finite iff Ha(d)/= is
finite.

Proof. The same proof given in [11, 2.19] works here, now using centrally finite pregeneric
modules, (4.5), (4.6), and (3.6). O

Proposition 4.9. Let A be an LL-constructible seminested ditalgebra over a perfect field
and F a finite field extension of L. Then, AF is centrally pregenerically tame iff A is so.
Hence, if A is centrally pregenerically tame, it is not almost sharply wild and it is not
almost endosharply wild.

Proof. The statement follows from the preceding Corollary and (3.9). O

5. Reduction

We shall see now how the centrally finite endofinite indecomposables with bounded
central endolength, over constructible ditalgebras, can be parametrized, modulo finite
field extensions, over a finite family of rational algebras. We adapt the original strategy
of Drozd (see also [7] and [5]) enriched with some ideas of [4].

Definition 5.1. Assume that A is a seminested ditalgebra with layer (R, W) and let
1 = 3" e be the decomposition of the unit of R as a sum of centrally orthogonal
primitive idempotents. Denote by B a fixed basis of the freely generated R-R-bimodule
Wy and by Pk the set of marked points of A, respectively, see [5, 23.9]. If M € A-Mod
is endofinite, the endonorm of M is the number

[[M]]¢ = Z Gy (M) oy (M) + Z 5 (M)?.

acBy 1€ Pmk

Consequently, for £ = (¢5,...,£2) € Z™, with non-negative entries, its endonorm is

defined by [[€°]|° = 3= en, i ia) Loy T iemn (65)%.
If M € A-Mod is endofinite and centrally finite, then its central endonorm is defined
by
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[1M]]¢ = ¢y x [[M]]°.

Notice that the endonorm introduced here for seminested ditalgebras is different from
the endonorm used in [4] for admissible ditalgebras. But if A is admissible and sem-
inested, it is elementary and both endonorms coincide.

Proposition 5.2. Assume that A is an LL-constructible seminested ditalgebra over a per-
fect field k. Then, for any endofinite indecomposable A-module G and any finite field
extension F of L, in the decomposition G¥ = G, @ --- & G, of the AF-module GF as a
direct sum of indecomposables we have that: G is finite-dimensional (resp. pregeneric,
centrally finite) iff so are Gi,...,Gy. Moreover, in the centrally finite case, we have
IGII° = |IGH|I°, for all i € [1,4]

Proof. This follows from (4.6). O

Proposition 5.3. Let A be a seminested ditalgebra with layer (R, W), over a perfect field k.
Let F* : A*-Mod —A-Mod be the functor associated to the reduction A — A* of
one of the types: replacement of a layered ditalgebra by an isomorphic one, absorption
of a loop, deletion of idempotents, regqularization of a solid arrow, edge reduction, or
unravelling. For N € A*-Mod, assume that F*(N) has finite endolength and is centrally
finite, then we have:

[|N]|¢ = ||Fe(N)||¢ in case § : A—— A% is an isomorphism of layered ditalgebras;
[|N]|¢ = ||F“(N)||¢ in the absorption case;

[|N||¢ = ||F4(N)||¢ in the deletion of idempotents case;

[IN]|€ < ||F"(N)||€ in the regularization case, where the inequality is strict whenever
F"(N) is sincere;

5. ||N||¢ < ||F(N)||€ in the case of edge reduction, where the inequality is strict when-

W

ever F¢(N) is sincere.

6. ||N]|® < [|F*(N)||° in the case of unravelling at a point ig using A1,...,\q, where
the inequality is strict whenever g(x) = (x — A1) --- (z — A\g) does not act invertibly
on F*(N).

Proof. Make M := F*(N), and recall that F* is full and faithful, thus we have an
isomorphism Fy——F); induced by F?. Make E := F);. Then: if z = a, our claim is
trivial, see [5, 25.2]; if z = r, our claim follows from the argument in the proof of [5,
25.3]; if z = d, our claim is clear, see [5, 25.4]; if z = e, our claim follows by the argument
in the proof of [5, 25.8]; if z = u, our claim follows by the argument in the proof of [5,
25.9]; our first item is clear. O

Definition 5.4. Let A be a seminested ditalgebra. For any positive number d € N and
any non-negative integer ¢, we consider the following:
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1. The symbol M 4(d,t) will denote the subclass of M 4(d) formed by the modules
M € My(d) with [|M]|¢ < t. We denote by MY%(d) (resp. MY(d,t)) the subclass
of M4(d) (resp. M 4(d,t)) formed by the sincere modules in M 4(d) (resp. sincere
modules in M 4(d,t)).

2. The symbol H 4(d,t) will denote the subclass of H 4(d) formed by the modules H €
H.a(d) with [|H||® < t. We denote by H%(d) (resp. H%(d,t)) the subclass of H4(d)
(resp. Ha(d,t)) formed by the sincere modules in H 4(d) (resp. sincere modules in
Hald, ).

We shall say that a seminested ditalgebra A is (d, t)-trivial (resp. sincerely (d, t)-trivial)
iff there is only a finite number of isoclasses of modules in M 4(d,t) (resp. in MY (d, 1))
and H.a(d, t) (vesp. HY%(d,t)) is empty.

Remark 5.5. Given a seminested ditalgebra A and d € N, there is a positive integer ¢
such that M4(d) = Ma(d,t), M%(d) = M%(d.t), Ha(d) = Ha(d,t), and HY(d) =
HY%(d,t). Indeed, there is only a finite number of endolength vectors ¢¢ and natural
numbers ¢ with ¢ x >, ¢ < d, thus there are only a finite number of possibilities for
L4(M) and cps for any M € Mu(d)|UH.a(d). Then, there is only a finite number of
possibilities for the number ¢3, x [|M]|¢, when M runs in M 4(d)|JH.a(d). We can
choose as t any integer upper bound of these numbers.

Proposition 5.6. Let A be an LL-constructible seminested ditalgebra over a perfect field k.
Take d € N and t > 0. Then, for any finite field extension F of I, we have:

L. Mye(d,t)/ = is finite iff Ma(d,t)/ = is finite. Similarly, M (d,t)/= is finite iff
MO (d, )/ is finite.

2. Ha(d,t) # 0 iff Has(d,t) # 0, and HY(d,t) # 0 iff HO:(d,t) # 0.

3. The F-ditalgebra AT is (d,t)-trivial (resp. sincerely (d,t)-trivial) iff the L-ditalgebra
A is (d,t)-trivial (resp. sincerely (d,t)-trivial).

Proof. Consider the scalar restriction functor Fy : A¥- Mod —s.A- Mod.

(1) We show first that any (resp. sincere) N € M 4=(d, t) is a direct summand of M
for some (resp. sincere) M € M 4(d,t). Given N € M 4r(d, t), we have a decomposition
Fe(N) = My @--- @ M, as a direct sum of indecomposables in A-mod, and we have
decompositions Ml]»F = N;16---PBN,,, as direct sum of indecomposables in AF-mod. By
3, 3.7], we know that N is a direct summand of F¢(N)F = M@ @MY Thus, N 2 N; ;
for some i,j. Then, from (4.6) and (5.2), we obtain c¢-endol(M;) = c-endol(N; ;) =
c-endol(N) < d and ||M;||¢ = ||N;i;]|¢ = |IN]|¢ < t. Thus, M; € My(d,t). If N is
sincere, so is IV; ; and MEF, thus M; is also sincere. Then, M 4(d,t)/= finite implies that
M yr(d,t)/= is finite, and similarly for the sincere case.

Given M € M4(d,t), from (4.6) and (5.2), we know that in the decomposition MF =
M;@---® M, as a direct sum of indecomposable A"-modules, we have M; € M 4¢(d, t).
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Moreover, if M is sincere and B is a basis for the L-vector space F, then @M
Fe(MY) = @, F¢(M;) and F¢(M;) is sincere for all j, thus M, is sincere for all j. If
M yr(d,t)/= is finite, there are only finitely many isomorphism classes of such modules
M;, then from (3.6), we know that there are only finitely many possible isoclasses of such
modules M. Then, M 4r(d,t)/= finite implies that M 4(d,t)/ = is finite, and similarly
for the sincere case.

(2) Given G € H4(d,t), from (4.6) and (5.2), we have a decomposition G¥ = G| @
- @ G, as a direct sum of pregeneric A-modules Gy,...,G, € H#(d,t). As in the
proof of (1), we can show that if G is sincere then each G; is sincere.

Take G € H 4¢(d,t). From (4.5), we get F¢(G) = G1 @ - -- @ Gy, for some pregeneric
A-modules Gy, ...,G; and G is a direct summand of G, for some i € [1,]. Using (4.6),
we have a direct sum decomposition GY & GO Hy®- - -® Hy, with H; pregeneric. Moreover,
G centrally finite implies that G; is centrally finite with ¢-endol(G;) = ¢-endol(G) < d
and ||G;]|° = ||G]|¢ < t. Thus, G; € Ha(d,t). Finally, notice that if G is sincere, so is
GY, and so is G;.

(3) This clearly follows from 7 and 2. O

Remark 5.7. If A is an L-constructible seminested ditalgebra and d € N, the same
number ¢ chosen in (5.5) satisfies M 4r (d) = M 4¢(d, ), M%s(d) = MO (d, t), Har(d) =
Har(d,t), and HY:(d) = H%:(d,t), for any finite field extension F of L.

Theorem 5.8. Let A be an LL-constructible seminested ditalgebra over a perfect field k.
Suppose that A is not almost sharply wild or not almost endosharply wild. Then, for
any non-negative integer d and t > 0, there is a finite field extension F,, of L such that:
for any finite field extension F of F,, there are minimal F-ditalgebras By, ...,B,, and
functors Fi, ..., F, such that:

1. Each functor F; : B;-Mod —AF-Mod is full and faithful and preserves endofinite
modules;

2. For almost every M € MY (d,t) there are i € [1,p] and N € B;-Mod with Fj(N) =
M in AF-Mod;

3. For every G € ’H?ﬂ (d,t) there are i € [1,p] and a principal generic B;-module Q;,
with F;(Q;) = G in A¥-Mod, see [5, 31.3];

4. The functors F; are compositions of basic reduction functors: thus each B; is ob-
tained from AF by a finite sequence of basic operations of the form C — CZ,
where z € {a,r,d,e,u}, or there is an isomorphism of layered ditalgebras £ :
C——C?, and F; is a composition of the corresponding basic reduction functors
F# : C*-Mod —C-Mod, or F* = F : C*-Mod —C-Mod given by restriction
through the isomorphism €.
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Proof. This proof is an adaptation of the proof of Drozd’s Tame and Wild Theorem,
more precisely of [4, 7.5] and [5, 26.9]. We give a full proof for the not almost sharply
wild case, the not almost endosharply wild case is similar.

Suppose that A is an L-constructible seminested ditalgebra not almost sharply
wild. Then, for each finite field extension F of L, from (3.4), we know that AF is an
F-constructible seminested ditalgebra not almost sharply wild. The same will remain
true for any ditalgebra obtained from AF by a finite number of basic operations of type
AF — AFZ with 2 € {a,7,d, e,u}, see (3.11).

We shall proceed by induction on ¢, for every d € N.

If A is sincerely (d,0)-trivial, by (5.6), so is A" for any finite field extension F of L,
and we have nothing to show (the empty family of functors works for any AF). So assume
that ¢ > 0 and that, for any ¢’ < ¢, any d’ € N, and any IL'-constructible seminested
ditalgebra A’, which is not almost sharply wild, there is a finite field extension F/ of L'
and, for each finite field extension F of F’,, there are functors F; : B;- Mod —.AF- Mod,
with B; a minimal F-ditalgebra, satisfying 1—4, for A’, d’ and ¢’. In particular, for almost
every M € MY,:(d’,t') there are i and N € Bi-mod such that F;(N) = M in A*-Mod,
and for each G € H&,]F(d’ ,t') there are a unique ¢ and a principal generic B;-module Q)
with F;(Q;) = G.

Now, fix any d € N and assume that the L-constructible seminested ditalgebra A is
not sincerely (d,t)-trivial. Otherwise, from (5.6), there is nothing to show: the empty
family of functors works for any A", and any finite field extension F of L.

Since A is a seminested ditalgebra, we can choose a minimal solid arrow « : ig—7jo
in By, that is a solid arrow « with minimal height. Then, by triangularity, we have that
d(a) € Wy, where (R, W) denotes the seminested layer of A, see [5, 23.5 and 14.1].

e Case 1: §(a) = 0 and iy = jo.

Since A is not almost sharply wild, by (3.14), Re;, = L. Consider the ditalgebra
A? obtained from A by absorption of the loop a. By [5, 20.6], we can identify A%
with AF? for each finite field extension F of L, and we have the associated functor
F* : AF2_Mod —AF- Mod. Then, we can apply (5.3)(2) to every M € /J\\/IOA]F(d, t) (resp.
M € H%:(d,t)) to obtain N € MY, (d,t) (resp. N € H%z,(d,t)) with F*(N) = M. We
have that A® has one solid arrow less than A. Repeating this argument, if necessary,
either we end up with a seminested ditalgebra with no solid arrows (that is a minimal
ditalgebra) or at some step we obtain a ditalgebra with a minimal solid arrow « in one
of the following cases.

e Case 2: §(a) =0 and iy # Jo.

Since A is not almost sharply wild, by (3.14), Re;, = L and Re;, = LL. Then, we can
consider the ditalgebra A° obtained from A by reduction of the edge o and the equiva-
lence functor F¢ : A°-Mod —.A- Mod. Then, from (5.3)(5) and (2.9), for every module
M e M%(d,t) (resp. M € H%(d,t)) we obtain a module N € MY%.(d,t —1) (resp.
N € HY%(d,t — 1)), with F¢(N) = M. By assumption A is not sincerely (d, ¢)-trivial,
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hence A€ is not sincerely (d,¢ — 1)-trivial. Applying our induction hypothesis to A°,
d, and t — 1, we get a finite field extension F, of L such that for any finite field ex-
tension F of F,, we have functors F; : B;- Mod —A“"-Mod, i € [1,m], satisfying
the corresponding statements 1—4. Recall from [5, 20.11] that the seminested ditalge-
bras A°F and AF¢ can be identified, and we have an edge reduction equivalence functor
e AF-Mod = AFe-Mod —A"-Mod. As before, for every module M € MO (d, t)
(resp. M € H%:(d,t)) we obtain a module N € M%;. (d,t—1) (resp. N € H%:. (d,t—1)),
with F¢(N) 22 M. Then, Fg := {F°F; | i € [1,m]} is the required family of functors for
A¥. d, and t.

e Case 3: §(a) # 0.

Write C' := Re;, @1 Rej,. Then, e;,Wie;, is a C-module and we can write 6(a) =
Zgzl c;v;, for some vy, ...,v; € ej,Bie;, and 0 # ¢; € C.

o Subcase 3.1: Some ¢; is invertible in C.

This is the case, for instance, if Re;, = L and Re;, = L. Make vy = Zgzl c;v; and
consider the change of basis for Wy where vy, ..., v, ..., vjisreplaced by vy,...,v},...,v;
using [5, 26.1] (more precisely, consider the matrix @ with Q¢ = ¢; for i € [1,7]; Qi =1
for i # t; and Qg = 0 for t # i # ¢; where @ is invertible because ¢; is s0).

Then, we can apply regularization to .4 and obtain an associated equivalence functor
Fr: A"-Mod —A-Mod. Then, we proceed as in Case 2. Namely, from (5.3)(4) and
(2.8), for every module M € MY%(d,t) (vesp. M € H%(d,t)) we obtain a module N €
MY, (d,t — 1) (resp. N € H%.(d,t — 1)), with F"(N) = M. By assumption A is not
sincerely (d, t)-trivial, hence A" is not sincerely (d,t — 1)-trivial. Applying our induction
hypothesis to A", d, and t — 1, we get a finite field extension F, of L. such that for
any finite field extension F of F,, we have the corresponding family of functors F; :
B;-Mod —A™-Mod, i € [1,m]. Recall from [5, 20.5] that the seminested ditalgebras
A" and AF" can be identified, and we have a regularization equivalence functor Fro
A™F-Mod = AF"-Mod — A"-Mod. Again, for every module M € M%:(d,t) (resp.
M € H%:(d,t)) we obtain a module N € MY, (d,t—1) (resp. N € H%s, (d,t —1)), with
FT(N) 2 M. Then, Fr := {F"F; | i € [1,m]} is the required family of functors for A¥,
d, and t.

o Subcase 3.2: Rej, = L.

Since we have already considered the Subcase 3.1, we may assume that Re;, 2 L.
Thus, Re;, = L[z]t,) and C = L[z]¢(,). By an appropriate change of basis of Wy of
the form v; = f(x) Puv;, for all 4, using again [5, 26.1], we may assume that ¢; € L[x].
Performing a finite field extension of L if necessary, we can assume that the polynomial
c1(x) splits in L[z] as a product of linear factors. Consider the ditalgebra A" obtained
from A by unravelling at ig using d and the different roots of ¢;(x), see [5, 23.23].

From (5.3)(6) and (2.10), for every module M € MY (d,t) (resp. M € H%(d,t)) with
M (c1(z)) not invertible, there is a module N € M%, (d,t—1) (resp. N € HY.(d,t—1)),
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with F“(N) = M. Applying our induction hypothesis to A" we get a finite field extension
F,, of L such that for any finite field extension F of F,, we have the corresponding
family of functors F; : B;- Mod ——.A%-Mod, i € [1,m]. Recall from [5, 20.11] that
the seminested ditalgebras A“F and Af* can be identified, and we have an associated
unravelling functor £ : A“F-Mod = AF- Mod —AF- Mod.

Then, {F“F; | i € [1,m]} is a family of functors as in 1 and 4, for AF, d, and t, which
covers only A¥-modules M as in 2 or § with M(c;(z)) not invertible.

So, consider also the ditalgebra A' obtained from A by localizing at the vertex ig
using the polynomial ¢;(x), see [5, 26.4]. Then for every module M € MY (d,t) (resp.
M e HY%(d,t)) with M(ci(z)) invertible, we obtain a module N € MY, (d,t) (resp.
N € H%(d,t)), with F/(N) = M, see [5, 26.6]. From [5, 26.7], we know that A' can be
identified with some A%¢ and F! with F*F¢.

According to the description of the differential §' of A’ given in [5, 26.4 and 17.7], we
have that s'(1®@ a® 1) = g:l ¢i(z)(1 ® v; ® 1). But now, ¢; is invertible and we can
proceed as in Subcase 3.1 to produce a finite field extension F/, of L. such that for any
field extension I of Iy, there is a family F7 : Bj- Mod —A¥_Mod, j € [1,m'], which
satisfies 1-4 for A'F, d, and ¢.

Now, consider a finite field extension F/, of L. containing F,, and F/,, and a finite field
extension F of F//.

From our preceding remark on A!, [5, 30.4 and 20.11], we can identify A¥ with A",
and we have an associated functor F' : A'F-Mod = A™- Mod —AF- Mod such that for
any M € MY:(d,t) (resp. M € H'%:(d,t)) with M (c1(z)) invertible, we obtain a module
N € M%:(d,t) (resp. N € HOx (d, 1)), with F'(N) = M.

Then, Fr := {F“F; | i € [Lm]}U{FZFJ{ | 7 € [1,m/]} is a family of functors as in I
and 4, for AF, d, and ¢, which covers the required AF-modules in 2-3.

o Subcase 3.3: Re;, = L.
This case is dual to Subcase 3.2.
o Subcase 3.4: Re;, 2 L and Rej, 2 L.

Assume that Re;, = L[z]s,) and Rej, = Lly|y(,). Hence, C = L[z, y]f(2)g(y)- After
an appropriate change of basis of Wy, of the form v} = f(x) Pg(y) v, using [5, 26.1],
we may assume that all the ¢; are polynomials in L[z, y]. Let h(z,y) be the highest
common factor of the ¢;(z,y) and assume that h(z,y)q;(x,y) = ¢;(x,y), for all i. Since
the g;(z,y) are coprime in L(x)[y], there are polynomials s;(x,y) € L[z, y] and a non-zero

polynomial ¢(x) € L[z] such that

c(z) =) silz,y)alz,y).

i=1

Again, performing a finite field extension of L if necessary, we can assume that c(z)
splits in LL[z] as a product of linear factors. Then, we can proceed as in Subcase 3.2,
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by unravelling at iy using d and the different roots of ¢(x). Moreover, we can consider
the ditalgebra A' obtained from A by localizing at the point iy using c(z). We have
the associated functors £ : AF“- Mod —AF- Mod and F' : AF'- Mod —AF- Mod, as
before.

Then, any M € MY%;(d,t) (resp. M € H%z(d, t)) with M (c(x)) non-invertible, can be
covered as in Subcase 3.2, for any finite field extension I of a suitable finite field extension
F,, of L. If M (c(x)) is invertible, we have that M = F'(N) where N € A™- Mod is sincere
and has the same central endonorm than M. From the preceding formula for ¢(z), we
obtain in the ditalgebra A’ that 1 = 27 [si(z,y)e(x) gi(z,y). The terms in this
formula all belong to the algebra H := L[z, y|.(y). Here, H = D[y], where D = L[z].)
is a principal ideal domain. From [5, 26.2], we obtain an invertible matrix @ € M;,;(H)
with first row (g1, ..., q;). Consider the change of basis for W} = S ® g W1 ®g S, which
replaces each w; :=1® v; ® 1 by w, defined by the formula

(w’l,...,w;-)t = Q(w1,...,w;)".

Hence,
dloa®l) = Zciwi = thiwi = hwj.

Since A’ is not almost sharply wild, by (3.14), we can assume, after performing a finite
field extension if necessary, that h is invertible. Now, we can replace the basis w/, w}, . ..
of W} by hw,w), ... and apply regularization, as in Subcase 3.1, to finish the proof. O

Corollary 5.9. Let A be an LL-constructible seminested ditalgebra over a perfect field k.
Suppose that A is not almost sharply wild or not almost endosharply wild. Then, for any
non-negative integer d and t > 0, there is a finite field extension F, of L such that: for
any finite field extension F of F,,, there are rational F-algebras I'y, ..., Iy, and functors
Fy, ..., F; such that:

1. Each functor F; : T';-Mod —A"-Mod is sharp and endosharp, and F;(F(x)) is an
algebraically rigid centrally finite pregeneric A¥-module;

2. For almost every M € MYz (d,t) there are i € [1,q] and N € I';-Mod with F;(N) =
M in A¥-Mod;

3. For every G € HY:(d,t) there is a unique i € [1,q] with F;(F(z)) = G in AF-Mod;

4. For each i € [1,q] there is an A¥-T;-bimodule Y;, which is free of finite rank as a
right T;-module, such that F; = L 4+(Y; ®r, —), where L 4 : A¥-Mod —.AF-Mod
is the canonical embedding.

Proof. Apply the last theorem to A, d and %, to obtain the field F,,, then fix some finite
field extension F of F,, to get minimal F-ditalgebras B, ..., B, and functors Fi,..., F,
as before. Since each B; is a minimal F-ditalgebra, we know that B; = I';; x --- X
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Iis; X F x--- xF, where I'; ; is a rational F-algebra for all j € [1,s;]. Consider the
canonical injections ©; ; : I'; ;- Mod — B;- Mod and the canonical embedding functor
Lp, : Bi-Mod —B;-Mod. Then, we have a natural isomorphism ©;; = T'; ; ®r, ; —,
where I'; ; has the natural B;-I'; j-bimodule structure. Since B; is minimal, it is also clear
that Lp, coincides with the extension functor E; : B;- Mod —B;- Mod corresponding
to the proper subalgebra B; of B;. Then, from (3.10), we know that Lg, is a sharp and
endosharp functor. It is clear that ©;; is also a sharp and endosharp functor. From
(5.8)(1) and (3.8)(2), F; is sharp and endosharp. From [5, 22.7] and (3.8)(1), we get a
sharp and endosharp functor Fj ; := FiE;©; ; = F;Lp, (I ; ®r, ; —) = L (Yi; ®r, , —),
where Y; ; is the A-T'; ;-bimodule F;(T; ;), which is free of finite rank by the right.

It is clear that ©; ; preserves algebraically rigid centrally finite pregeneric modules,
and so does E; by (2.6). The functor F; preserves algebraically rigid centrally finite
pregeneric modules by (2.8) and (2.10). Then, F; ; also has these properties.

Finally, notice that almost every finite-dimensional indecomposable module M of
B;-Mod is of the form E;©; ;(M’), for some j and some M’ € T'; j-Mod, and every
principal pregeneric B;-module @ is of the form E;0, ;(F(z)), for a unique j. Then, the
family of rational F-algebras {I'; ;}; ; and the family of functors {F; ;}, ; work. O

In the following result we remove the sincerity and the endonorm from the statement
of the last corollary.

Theorem 5.10. Let A be an LL-constructible seminested ditalgebra over a perfect field k.
Assume that A is not almost sharply wild or not almost endosharply wild. Let d be
a mon-negative integer. Then, there is a finite field extension F, of L such that: for
any finite field extension F of F,,, there are rational F-algebras I'y, ..., Ty, and functors
Fi, ..., F,, such that:

1. Each functor F; : T;-Mod — A¥-Mod is sharp and endosharp, and F;(F(x)) is an
algebraically rigid centrally finite pregeneric AF-module;

2. For almost every M € M 4=(d) there are i € [1,m] and N € I';-Mod with F;(N) =
M in A¥-Mod;

3. For every G € H 4#(d) there is a unique i € [1,m] with F;(F(z)) = G in AF-Mod;

4. For each i € [1,m] there is an A¥-T';-bimodule Y;, which is free of finite rank as a
right T';-module, such that F; = L 4=(Y; ®r, —), where L 4¢ : A¥-Mod —.AF-Mod
is the canonical embedding.

Proof. This is a standard procedure and similar to the proof of [4, 8.1]. Anyway, we recall
the argument. First notice that we have a corollary of (5.9) by eliminating the numbers
t in the hypothesis of (5.9) and replacing MY (d, t) (resp. H%:(d,t)) by M%z(d) (resp.
by H%g(d)) in its conclusions. The proof of this corollary, which we will refer to as
Corollary (5.9), is trivial if we keep in mind (5.5) and (5.7).
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Now take an IL-constructible seminested ditalgebra 4 and assume that it is not almost
sharply wild. The not almost endosharply wild case is treated in a similar way.

Given d € N, we shall say that a seminested ditalgebra A is d-trivial (resp. sincerely
d-trivial) iff there is only a finite number of isoclasses of modules in M 4(d) (resp. in
MY%(d)), and Ha(d) (resp. H%(d)) is empty.

We assume that A is not d-trivial, otherwise, from (5.6), there is nothing to prove
(the empty family of functors works for any A", and any finite field extension F of LL).

Consider the L-constructible seminested ditalgebras A%, ..., A% obtained from A
by deletion of a finite number of idempotents of R. They are not almost sharply wild.
Then, for any field extension [ of L, consider the F-constructible seminested ditalgebras
AFdu AFd: obtained from AF by deletion of the corresponding finite number of idem-
potents of R¥. They are not almost sharply wild. Recall from [5, 20.4], that each AF%:
can be identified canonically with A%F. We consider also A% := A, A% .= AF, and the
identity functor F9 : A¥do_Mod —.A%- Mod. Consider the subset I of [0, ] defined by
i € Iiff A% is not sincerely d-trivial.

Then, apply (5.9)" to each A% and d, for i € I, to obtain finite field extensions {F;};cr
of L satisfying the corresponding conditions. Then, if F,, denotes a finite field extension
of L containing all IF;, for ¢ € I, and F is any finite field extension of F,,, there are functors
{F;; : T; j-Mod ——A%F- Mod}’”, satisfying the corresponding statements 1-/ of the
Corollary (5.9)" for each A%F and d. Then, we can consider the family of compositions

Fr = {I; j-Mod Lody AGF_Mod = AP Mod 25 AF-Mod | i € I and j € [1, nil} .

It is clear that the family Fy satisfies item 1, because the families {F; ;}; do so and F'%
is sharp and endosharp. The family Fy also satisfies 2 because given any M € M 4¢(d),
we have M = F9i(N), for some N € M%di (d). For almost each one of these modules N,
we have F; ;(H) = N, for some H € I'; j-mod. Similarly, Fr satisfies 3. Item 4 follows

from the application of [5, 22.7]. O

Corollary 5.11. Let A be an L-constructible seminested ditalgebra over a perfect field k.
Then, A is centrally pregenerically tame iff A is not almost sharply wild iff A is not
almost endosharply wild.

Proof. This follows from (4.9), (5.10), and (4.8). O
6. Tame and wild theorem

In the following paragraphs we establish the fundamental relation of the notion of
centrally finite generic tameness with the notions of wildness introduced before: our
Theorem (1.5). For technical reasons, we need to consider the following variation of the
given notions of wildness.
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Definition 6.1. A layered ditalgebra A is called absolutely sharply wild (resp. absolutely
endosharply wild) iff there is some A-k(z,y)-bimodule Z, free of finite rank by the right,
such that the functor

ZF Qb w0y — L
D@ AR Mod =255 AF- Mod

F{x,y)- Mod
is sharp (resp. endosharp), for every finite field extension F of k. A layered ditalgebra
A is called almost absolutely sharply wild (resp. almost absolutely endosharply wild) iff
AF is absolutely sharply wild (resp. absolutely endosharply wild), for some finite field
extension F of k.

Lemma 6.2. For any non-zero polynomial h € k[x,y|, the algebra k[z,y]n is almost ab-
solutely sharply wild and almost absolutely endosharply wild.

Proof. It is easy to show that there is a finite field extension F of k£ and a polynomial
g € Flz,y] with ¢(0,0) # 0 such that for any finite field extension E of F, we have
]E[l‘, y]h = E[LE, y]g-

In order to see that F[z,y], is sharply and endosharply wild, we just have to notice
that in the proof of [5, 22.16] the functor realizing the wildness of F[xz, y], determines in
fact a sharp and endosharp functor, see [5, 31.4].

We can show that Flx,y], is absolutely sharply wild (resp. absolutely endosharply
wild) following the argument of the proof of [5, 30.7], where we have to notice that the
bimodules which realize wildness for each scalar extension determine in fact sharp (resp.
endosharp) functors. O

Theorem 6.3. Every critical ditalgebra is absolutely sharply wild and absolutely en-
dosharply wild.

Proof. This is done as in the first part of the proof of [5, 30.6], where the functors
appearing there are sharp and endosharp. O

Proposition 6.4. Given any almost sharply wild (or almost endosharply wild) L-construct-
ible seminested ditalgebra A, over a perfect field, there is a finite field extension F of L,
a critical F-ditalgebra C, and functor F : C-Mod —AF-Mod, which is a composition
of basic reduction functors of type F*, with z € {a,r,d,e,u}.

Proof. This follows from the argument in the proof of (5.8), where applying basic re-
duction operations to any IL-constructible seminested ditalgebra A, modulo finite field
extensions, we either end up with minimal ditalgebras or at some stage we find a critical
situation which is preserved under finite field extensions, see also (3.14) and its proof. If,
for a given d € N, we end up with minimal ditalgebras over a finite field extension F of
L, this means that A" has finitely many non-isomorphic centrally finite endofinite inde-
composables with central endolength bounded by d. From (4.8), the same holds for A.
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Thus, A is centrally pregenerically tame, and it is not almost sharply wild (and it is not
almost endosharply wild). Thus, for an almost sharply wild (or an almost endosharply
wild) ditalgebra A we must encounter the critical situation mentioned before. O

Corollary 6.5. Any almost sharply wild (resp. almost endosharply wild) L-constructible
seminested ditalgebra A over a perfect field is almost absolutely sharply wild (resp. almost
absolutely endosharply wild).

Proof. From (6.4), there is a finite field extension F of L, a critical F-ditalgebra C, and
a functor F : C- Mod — A"- Mod, which is a composition of basic reduction functors of
type F?, with z € {a,r,d, e, u}. From [5, §20], if B is the seminested ditalgebra obtained
from a seminested F-ditalgebra B by a basic operation of type z € {a,r,d, e,u}, and E is
any finite field extension of F, we can identify B*® with B®* and the following diagram
commutes up to isomorphism

zE
B%-Mod £ BE-Mod

()" ()"
B*-Mod £ B-Mod,

where F*E = FEz i5 the functor associated to the basic operation BE — BEF*. So we
denote by F® the composition of the functors F*E corresponding to the functors F?
appearing in the composition F'. Then, we also get a functor F¥ : C®- Mod —AE- Mod,
where CF is a critical E-ditalgebra. Thus, the functor F™® is full and faithful and preserves
endofinite modules, and hence it is a sharp and endosharp functor.

By (6.3), applied to the critical ditalgebra C, there is a C¥-F(z,y)-bimodule Z, free
of finite rank by the right, such that for each finite field extension E of F, the following
functor is sharp (resp. endosharp):

Z"®p(a,y) — L
E(z,)- Mod ———=,C®- Mod —<5CE- Mod .

From [5, 22.7], the following functor is also sharp (resp. endosharp)

FE(Z®)®g(0,y) — L
I BT AR \od L4% AB- Mod,

E(z,y)- Mod
and the bimodule F®(ZF) is finitely generated projective by the right (hence free of finite
rank). The commutativities of the above diagrams give F¥(ZF) = F(Z)E, so we get
that the A¥-F(x,y)-bimodule F(Z) realizes the absolute sharp wildness (resp. absolute
endosharp wildness) of A¥. O

Lemma 6.6. Consider a finite-dimensional algebra A, over a perfect field k, and its
Drozd’s ditalgebra D = DN, If D is sharply (resp. endosharply) wild, then the following
composition functor is sharp (resp. endosharp)
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Z®k(z,y)7 Cok.

k(z, y)- Mod D-Mod £2D-Mod =P (A) 225 A - Mod .
Here, the bimodule Z realizes the sharp (resp. endosharp) wildness of D and is given by
our assumption, =5 denotes the usual equivalence, and Cok is the cokernel functor.

Proof. Since k(x,y) admits an infinite number of non-isomorphic finite-dimensional
(hence endofinite) indecomposables, then we can use the same argument of the proof
of [5, 22.20(1)] and [2, 4.4], to guarantee that the composition preserves indecompos-
ables (resp. endofinite indecomposables). Using [5, 18.10] and the fact that the functor
Lp(Z®p(z,y) —) is sharp (resp. endosharp), we obtain that the above composition functor
is sharp (resp. endosharp). O

Lemma 6.7. Consider a finite-dimensional algebra A over a perfect field k, and suppose
that its Drozd’s ditalgebra D™ is semielementary, as in (3.1). Then,

1. DAY s centrally pregenerically tame iff D is so;

2. DAY s almost sharply wild (resp. almost endosharply wild) iff D* is so;

3. DAY s almost absolutely sharply wild (resp. almost absolutely endosharply wild) iff
DA is so.

Proof. Consider the basification equivalence functor F® : DA*-Mod ——D?-Mod, as in
[2, 3.3]. Then F® is a sharp and endosharp functor, and (1) follows from [2, 3.3]. We
denote by P DAFP. Mod ——DAF-Mod the basification equivalence functor, for any
finite field extension F of k. Recall that we can identify (D™)F with DAF, and DAF with
DAF

(2) If DAYF = DAFb s gharply wild (resp. endosharply wild), for some finite field
extension F of k, from [5, 22.7], we know that if DAF is sharply wild (resp. endosharply
wild).

Now, assume that DAF is sharply wild (resp. endosharply wild), for some finite field
extension IF of k. Then, by (3.9), DAF is not centrally pregenerically tame. By assumption,
DA is semielementary. Hence, DAF is semielementary. From item 1, we obtain that DAF®
is not centrally pregenerically tame. By (5.11), the F-constructible seminested ditalgebra
DAFb = DAY j5 almost sharply wild (resp. almost endosharply wild). Then, DA? is almost
sharply wild (resp. almost endosharply wild).

(3) Assume that DA’ is almost absolutely sharply wild (resp. almost absolutely
endosharply wild). Then, there is a finite field extension F of k, and some DAYF-F(z, y)-bi-
module B, free of finite rank by the right, such that the functor

BE®g(s,y) —

L
E(z, y)- Mod DME_Mod —225DAE_Mod

is sharp (resp. endosharp), for every finite field extension E of F. Then, by [5, 22.7], the
composition functor
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B®r(x,y)— L ;avF

F(z,y)- Mod DAF_Mod S22, DAF_\[od —E AR Mod

is a sharp (resp. endosharp) and naturally isomorphic to Lpas(F?(B) ®g(z,,) —), where
the DAF-F(z,y)-bimodule F®(B) is free of finite rank by the right. We claim that
Lpae(F*(B)® ®g(y.,,) —) is sharp (resp. endosharp), for any finite field extension E of F.

Indeed, the following composition is also sharp (resp. endosharp)

L oAb

E(z,y)- Mod PO pAE o LR pAVE g ELDAE Nog
and is naturally isomorphic to Lpaz(F?(B®) ®g(,. ) —), where the DAP-E(z, y)-bimodule
EF?(BE) = F?(B)E is free of finite rank by the right. Thus, D* is almost absolutely sharply
wild (resp. almost absolutely endosharply wild).

If DA is almost absolutely sharply wild, it is almost sharply wild. Thus, item 2 implies
that DA? is almost sharply wild. Therefore, by (6.5), DA? is almost absolutely sharply
wild. The argument for almost absolute endosharp wildness is the same. O

Proposition 6.8. Let A be a finite-dimensional algebra over a perfect field k. Then,
if its Drozd’s ditalgebra D™ is almost absolutely sharply wild (resp. almost absolutely
endosharply wild) then A is almost absolutely sharply wild (resp. almost absolutely en-
dosharply wild).

Proof. Assume that D* is almost absolutely sharply wild (resp. almost absolutely en-
dosharply wild). Then, there is a finite field extension F of k, and some D*F-F(z,y)-bi-
module B, free of finite rank by the right, such that the functor

B *®g(4,yy — L
E(z, y)- Mod — =2~ DA \od “2%DAE \od

is sharp (resp. endosharp), for every finite field extension E of F. By (6.6) and [5, 22.18],
the composition

T,y L = O
F(z, y)- Mod —25=0y DAF_\od Z225DAF_ NMod —Z5 P! (AF) 25 AP Mod

is a sharp (resp. endosharp) functor naturally isomorphic to Z ®p(s ) —, where the
AF-F(x,y)-bimodule Z = Cok Z(B) is finitely generated (may be not free) by the right.
We claim that ZF ®E(z,y) — is sharp (resp. endosharp), for any finite field extension
E of F. Indeed, by (6.6) and [5, 22.18], the following composition is also sharp (resp.
endosharp)

B *®g(z, 4y — )-Cok, Cok

L =
E(z,y)- Mod DE-Mod —225DAE- Mod — P! (A®) =25 A®- Mod
and is naturally isomorphic to Z* ®g(,,) —, where the AE-E(z,y)-bimodule 2% =
Cok Z(BF) is finitely generated (may be not free) by the right (indeed, the functors

Cok and = commute with scalar extensions).
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Now, consider the functor F[z,y] ®g[z,y — : Flz,y]- Mod —F(z,y)- Mod and the
AF-F[z,y]-bimodule Z; := Z ®F(z,y) Flz,y]. Hence, for each finite field extension E of I,
we have a sharp (resp. endosharp) functor Z7 ®F[z,y] — : E[z,y]- Mod ——AE-Mod.

Now, consider a presentation of the F[z, y]-module Z;

Flx, y]siﬂF[x, y|"—Z; —0.

Then, there are invertible matrices P and @ with entries in F[xz,y]s, for some non-

zero polynomial h € F[z,y]|, such that PHQ = (é 8

AF-F[z,y]p-bimodule Zy = Z; ®F[z,y) Flo,y]n is free of finite rank by the right, see
the proof of [5, 22.17].
The same matrices P, H, ) have entries in E[z, y]p, for any finite field extension E of

). This implies that the

F, and we still have a presentation of the E[z, y]-module Z}
Elz,y)*~Elz, y]" — ZE——0.

Again, this implies that the A®-E[z,y],-bimodule Z57 = ZF ®g(, ) Elz, y]4 is free of finite
rank by the right.

Moreover, the functor Z§ ®g(y,y), — : E[z, y]a- Mod —A®-Mod is sharp (resp. en-
dosharp).

Now, we know from (6.2) that F[z, y], is almost absolutely sharply wild (resp. almost
absolutely endosharply wild). Then, there is a finite field extension F,, of F such that
Fu[z,y]n is absolutely sharply wild (resp. absolutely endosharply wild), say with the
bimodule X, then we have that Z3 := Zg” OF[z,y], X 15 & AFv-F,, (z,y)-bimodule, free
of finite rank by the right, such that, for any finite field extension E of F,,, the functor
VA QR (z,y) — * Bz, y)- Mod ——A®-Mod is sharp (resp. endosharp). O

Lemma 6.9. Let I be a finite field extension of the perfect field k and A a finite-
dimensional k-algebra. Then, for any d € N, there is only a finite number of isoclasses
of centrally finite generic A*-modules H with c-endol(H) < d iff there is only a finite
number of isoclasses of centrally finite generic A-modules G with c-endol(G) < d. Thus,
AL is centrally generically tame iff A is centrally generically tame.

Proof. The same strategy of the proof given in [11, 2.19] works here. O

Theorem 6.10. Let A be a finite-dimensional algebra over a perfect field. Then the fol-
lowing statements are equivalent:

1. A is not centrally generically tame;

2. A is almost sharply wild;

3. A is almost absolutely sharply wild;

4. A is almost endosharply wild;

5. A is almost absolutely endosharply wild.
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Proof. Consider a finite field extension L of k such that A* admits a splitting A¥ =
S @ rad A%, where the semisimple subalgebra S is a finite product of matrix algebras
with coefficients in L, or, equivalently, such that DAL is semielementary (and DA is
L-constructible).

Obviously, 8 implies 2 and & implies 4. By (3.9) and (6.9), we know that 2 implies
1, and 4 implies 1.

In order to show that 1 implies 3 and 5, assume that A is not centrally generically
tame. From (6.9), A" is not centrally generically tame. By (2.13), DAL is not centrally
pregenerically tame. Then, (6.7) implies that D is not centrally pregenerically tame,
and (5.11) implies that DA is almost sharply wild and almost endosharply wild. By
(6.5), DA is almost absolutely sharply wild and almost absolutely endosharply wild.
Hence, (6.7) implies that this holds for DAL, By (6.8), A is almost absolutely sharply
wild and almost absolutely endosharply wild. Hence, 8 and 5 hold for A. O

7. Parametrization theorem

In this last section we transfer the parametrization theorem (5.10), for modules over
constructible seminested ditalgebras, to modules over finite-dimensional algebras over
perfect fields. This will be used to derive our theorem (1.6).

Theorem 7.1. Let A be a centrally generically tame finite-dimensional algebra over a
(possibly finite) perfect field k, and let d be a non-negative integer. Then, there is a finite
field extension F,, of k such that: for any finite field extension F of F,, there are rational
F-algebras T'1,. .., Ty, and AF-T';-bimodules Z, ..., Zm, which are finitely generated as
right T';-modules, satisfying the following:

1. The functor Z; @r, — : I';-Mod —A¥-Mod is sharp and Z; @r, F(x) is an alge-
braically rigid centrally finite generic A¥-module, for i € [1,m];

2. For almost every finite-dimensional indecomposable M € AF-Mod with c-endol(M)
< d, there are i € [1,m] and N € T';-Mod with Z; ®p, N = M in A¥-Mod;

3. For every centrally finite generic G € AF-Mod with c-endol(G) < d, there is a
unique i € [1,m] with Z; ®r, F(x) = G in A¥-Mod.

Proof. Let A be a centrally generically tame finite-dimensional algebra over a perfect
field k£ and let d € N. Since k is a perfect field, there is a finite field extension L of k
such that the Drozd’s ditalgebra DA of AT is semielementary. By (6.9), A" is centrally
generically tame. Then, DA is an L-constructible seminested ditalgebra not almost
sharply wild, by (2.13) and (6.7). Moreover, for each finite field extension F of I, we can
identify DA with DAF see [5, 20.13], and consider the basification equivalence functor
Fb . DAFb_NMod ——=DAF-Mod. From [4, 2.11 and 2.12], there is a positive integer sy,
independent of the field I, such that c- endol(N) < ju, x c- endol(EF?(N)), for any centrally
finite N € DAF-Mod.
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Make d’ := (1 +dimg A) x d and d” := pup x d'.

Apply (5.10) to the ditalgebra DAL and the integer d” to obtain a finite field extension
F, of L such that, for any finite field extension F of [F,,, there is a family of functors
F; : Ty-Mod —DAF-Mod, i € [1,m], such that 14 of (5.10) hold for DA™ and 4"
(recall that we can identify DA with DAT by [5, 20.11]).

For any i € [1,m], we have F; & Lpa=(Y; @, —), where Y; is a DAFP-T';-bimodule,
free of finite rank as a right I';-module and F; is sharp, and preserves pregeneric
modules. From [5, 22.7], we get that F'F, & Lpa:(F*(Y;) ®r, —), where F°(Y;) is a
DAF.T;-bimodule, free of finite rank as a right I';-module and F®F; is sharp, and pre-
serves pregeneric modules.

Consider the usual equivalence functor Z ¢ : DAF- Mod ——P!(AF) and, for i € [1,m],
set Z; := Z @par F*(Y;), where Z is the transition bimodule associated to A¥, as in [5,
22.18]. Each bimodule Z; is finitely generated over I'; by construction. For each 4, denote
by U; the composition

b =
Ii-Mod =55 DAF Mod =25 pLAF) 25 AF-Mod.

Then, U, = COkEA[FLDA[F(Fb(Y;) Qr; —) =7 & pAF Fb(Yl) Qr, — = Z; ®r, —-

The functor Lpar(F°(Y;) ®r, —) preserves isomorphism classes of indecomposables.
From [5, 22.20], we know that ZxsF°F; = =y Lpar (F?(Y;) ®p, —) is a sharp functor
which maps indecomposable I';-modules into P?(AF). By [5, 18.10], the functor Cok :
P2(AF)——AF-Mod is also sharp, and then the same holds for U;. The last statement
of 1 follows from property (5.10)(1) for F;, [4, 2.11], and (2.12).

(2): Take a finite-dimensional indecomposable AF-module M satisfying that
c-endol(M) < d and a module L € DAF-Mod with Z5#(L) € P?(AF) and Cok Zyr (L) =
M. Then, take L' € DA-Mod with F®(L’') = L. From (2.12), the finite-dimensional
indecomposable DAF-module L satisfies c-endol(L) < d’, and L' € Mpar (d”). From
(5.10)(2), we know that for almost every such modules L', we have that L' & F;(N),
for some i € [1,m] and N € T';-mod. Hence, M = CokZ,r(L) & CokZps FPF;(N) =
Z; @r; N.

(3): Take a centrally finite generic A¥-module G with c-endol(G) < d and a
module H € DA'-Mod with Z5¢(H) € P2(AF) and CokZxr(H) = G. Then, take
H' € DM Mod with FP(H') = H. From (2.12), H is a centrally finite pregeneric
DAF-module with c-endol(H) < d’, and H' € Hpam (d"). From (5.10)(3), we have H' =
Fy(F(x)) in DAF-Mod, for i € [1,m]. Thus, G = Cok Zx¢(H) = Cok Zz= FPF;(F(z))
Z;@r, F(z). O

1

Lemma 7.2. Let A be a finite-dimensional algebra over a perfect field k, d € N, and
L a finite field extension of k. If every centrally finite generic A*-module H with
c-endol(H) < d is algebraically bounded, then every centrally finite generic A-module
G with c-endol(G) < d is algebraically bounded.
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Proof. Let G be a centrally finite generic A-module with ¢-endol(G) < d. From [11, 2.14],
we know that G* =2 m Gy @ - -- @ m:Gy, where Gy, . .., Gy are generic A*-modules, and
G is algebraically bounded iff G; is algebraically bounded for some j € [1,¢]. But, from
(11, 2.18], c-endol(G) = c-endol(G;), for all i, and there is j € [1,t] such that G; is
centrally finite. By assumption, G; is algebraically bounded and we are done. O

The content and proof of our theorem (1.6) is divided into the following two theorems.

Theorem 7.3. Assume that A is a finite-dimensional algebra over a perfect field. If A is
centrally generically tame and G is a generic A-module, then G is centrally finite iff G
is algebraically bounded.

Proof. Assume that A is centrally generically tame. Therefore, given d € N, there is
a finite field extension L of k such that the centrally finite generic A“-modules G' with
c-endol(G) < d can be parametrized as described in (7.1). Then, any such centrally finite
generic Ak-module G is algebraically bounded, by item 1 of (7.1). By (7.2), any centrally
finite generic A-module H with ¢- endol(H) < d is algebraically bounded. Since this holds
for each d € N, any centrally finite generic A-module is algebraically bounded. Finally,
it is clear that A is semigenerically tame and, from [11, 1.8], we know that algebraically
bounded generic A-modules are centrally finite. O

Theorem 7.4. Let A be a finite-dimensional algebra over a perfect field k. Then, A is
centrally generically tame iff A is semigenerically tame.

Proof. Clearly, every centrally generically tame finite-dimensional algebra is semigener-
ically tame.

Fix a finite-dimensional algebra A over a perfect field k. Let us show that A is centrally
generically tame, whenever it is semigenerically tame. There is a finite field extension L
of k such that A = S @ J, where J is the Jacobson radical of A* and S is a semisimple
subalgebra of A™ of the form M, (L) x - -- x M,, (L), and hence DA is a semielementary
L-ditalgebra. By [11, 2.19] and (6.9), it will be enough to show that A" is centrally
generically tame, whenever it is semigenerically tame. So, we can assume that L = k.

Now assume that A is semigenerically tame, but not centrally generically tame.
Then, by (2.13), D* is not centrally pregenerically tame. By (6.7), we know that the
k-constructible seminested ditalgebra DA is not centrally pregenerically tame. Thus,
by (5.11), DAY is almost sharply wild. By (6.4), we have a finite field extension F of k,
a critical F-ditalgebra C, and a functor

F : C- Mod — DA Mod,

which is a composition of functors of type F'*, where z € {a,r,d,e,u}. Denote by K
the algebraic closure of F. Thus, K is also the algebraic closure of k. We obtain directly
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from the definition [5, 24.5] that C¥ is a critical K-ditalgebra. From [5, 29.1], we have a
functor

FX . c¥-Mod — DA _Mod,

where F'® is isomorphic to a composition of functors of type F*X, with z € {a,r,d, e, u}.
This implies that DAY is wild but, by [5, 20.11], this last ditalgebra can be identified
with DAL So DAK s wild, and so is AK. This contradicts [11, 1.8] O
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