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We show that the central generic tameness of a finite-
dimensional algebra Λ over a (possibly finite) perfect field, 
is equivalent to its non-almost sharp wildness. In this case: 
we give, for each natural number d, parametrizations of the 
indecomposable Λ-modules with central endolength d, modulo 
finite scalar extensions, over rational algebras. Moreover, we 
show that the central generic tameness of Λ is equivalent 
to its semigeneric tameness, and that in this case, algebraic 
boundedness coincides with central finiteness for generic 
Λ-modules.
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1. Introduction

Denote by k a fixed ground field and let Λ be a finite-dimensional k-algebra. Given 
a Λ-module G, recall that by definition the endolength G is its length as a right 
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EndΛ(G)op-module. The module G is called generic if it is indecomposable, of infinite 
length as a Λ-module, but with finite endolength. The algebra Λ is called generically 
tame if, for each d ∈ N, there is only a finite number of isoclasses of generic Λ-modules 
with endolength d. This notion was introduced and examined by W.W. Crawley-Boevey 
in [8] and [9]. In this paper we continue our exploration of the notion of generic tameness 
for finite-dimensional algebras Λ over perfect fields (see [2–4]). Our main results, stated 
below, apply to generically tame finite-dimensional algebras Λ over a perfect (possibly 
finite) field k. In order to state precisely and comment these results we need to recall 
and introduce some terminology in the following definitions.

Definition 1.1. For any k-algebra B and M ∈ B- Mod, denote by EM := EndB(M)op its 
endomorphism algebra. Then, M admits a structure of B-EM -bimodule. By definition, 
the endolength of M , denoted by endol(M), is the length of M as a right EM -module.

A module M ∈ B- Mod is called pregeneric iff M is indecomposable, with finite 
endolength but with infinite dimension over the ground field k. The algebra B is called 
pregenerically tame iff, for each natural number d, there are only finitely many isoclasses 
of pregeneric B-modules with endolength d.

Definition 1.2. With the preceding notation, given M ∈ B- Mod, write DM =
EM/ radEM and denote by ZM the center of DM . We shall say that the B-module 
M is centrally finite iff DM is a division ring and [DM : ZM ] is finite. In this case, 
[DM : ZM ] = c2M , for some positive integer cM . If M is centrally finite, the central 
endolength of M is the number c- endol(M) = cM × endol(M).

The algebra B is called centrally pregenerically tame, if for each d ∈ N there is 
only a finite number of isoclasses of centrally finite pregeneric B-modules with central 
endolength d.

Definition 1.3. Again with the preceding notation, a pregeneric B-module G is called 
algebraically rigid if, for any algebraic field extension L of k, the BL-module GL is 
pregeneric.

We say that a pregeneric B-module G is algebraically bounded iff there exists a finite 
field extension F of k and a finite sequence of algebraically rigid pregeneric BF-modules 
G1, . . . , Gn such that GF ∼= G1 ⊕ · · · ⊕Gn.

An algebra B is called semipregenerically tame if for each d ∈ N there is only a finite 
number of isoclasses of algebraically bounded and centrally finite pregeneric B-modules 
with central endolength d.

If B is a finite-dimensional algebra, the notion of pregeneric B-module coincides with 
the usual notion of generic B-module. Hence, in this case we will eliminate the term 
“pre” which appears in the preceding denominations.

In [4] we obtained for a finite-dimensional semigenerically tame algebra Λ over a 
perfect field, parametrizations of the centrally finite algebraically bounded Λ-modules 
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“up to a finite extension of the field k”. In the following definition we give a couple of 
useful variations of the notion of wildness with a similar relaxation of the ground field.

Definition 1.4. If A and B are k-algebras, a k-functor F : A- Mod−−→B- Mod is called 
sharp (resp. endosharp) iff F preserves indecomposables (resp. endofinite indecompos-
ables), isomorphism classes of indecomposables (resp. of endofinite indecomposables), 
and induces isomorphisms DM

∼= DF (M), for each indecomposable (resp. endofinite in-
decomposable) A-module M , see [11, 4.1].

An algebra B over a field k is called sharply wild (resp. endosharply wild) iff there is a 
B-k〈x, y〉-bimodule Z, which is free of finite rank by the right and such that the functor 
Z ⊗k〈x,y〉 − : k〈x, y〉- Mod−−→B- Mod is sharp (resp. endosharp).

An algebra B over a field k is called almost sharply wild (resp. almost endosharply 
wild) iff there is a finite field extension F of k such that BF is sharply (resp. endosharply) 
wild.

Our main results are the following. Since generically tame finite-dimensional k-algebras 
are centrally generically tame, they apply to finite-dimensional generically tame algebras 
over perfect fields.

Theorem 1.5. Let Λ be a finite-dimensional algebra over a perfect field, then Λ is centrally 
generically tame iff Λ is not almost sharply wild iff Λ is not almost endosharply wild.

The preceding result together with Theorem (7.1) can be considered as a generaliza-
tion of the celebrated Tame and Wild Theorem of Drozd (see [10] and [7]), to the perfect 
ground field case.

Theorem 1.6. Assume that Λ is a finite-dimensional algebra over a perfect field. Then, Λ
is centrally generically tame iff Λ is semigenerically tame. Moreover, if Λ is semigener-
ically tame and G is a generic Λ-module, then G is centrally finite iff G is algebraically 
bounded.

Given a finite-dimensional algebra Λ over a perfect field k, it is clear that Λ is cen-
trally generically tame whenever it is generically tame, and that Λ is semigenerically 
tame whenever it is centrally generically tame. We do not know whether the former 
implication can be reversed. The notions of central finiteness and algebraic boundedness 
were introduced in [11], where the equivalence Λ semigenerically tame iff ΛK is gener-
ically tame, where K is the algebraic closure of k, is established. We do not know if 
centrally finite generic modules coincide with generic modules in the general case of a 
generically tame Λ.

A well known conjecture by Crawley-Boevey (see [9, 7.2 and 7.4]) asserts (if we restrict 
it to our context of a finite-dimensional algebra Λ over a perfect field) that Λ is either 
generically tame or generically wild, and not both. It includes the weaker conjecture 
that Λ can not be simultaneously generically tame and generically wild. We remark 
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that this last weaker statement is equivalent to the following: Every generic module 
over a generically tame finite-dimensional algebra Λ is centrally finite. Indeed, this is a 
consequence of the following fact pointed out by Crawley-Boevey in [9]: Given a generic 
Λ-module G, we have that EndΛ(G) is a PI ring iff DG is finite-dimensional over its 
center; thus G is centrally finite iff EndΛ(G) is a PI ring.

Once our Theorem (1.6) is proved, we can look and compare the parametrizations 
given in [4, 1.8] and (7.1). The latter one is given over rational algebras, while the former 
one is given over polynomial algebras. We stress the fact that, even though these theorems 
are both proved using matrix problems techniques, the proofs are quite different. The 
scheme of the proof of (7.1) is closer to the one followed for the proof of Drozd’s theorem 
in [7] and [10].

The proofs of our main results for algebras rely on the theory of differential tensor 
algebras (ditalgebras for short) and reduction functors first developed by the Kiev School 
of representation theory of algebras. For the general background on ditalgebras and their 
module categories, we refer the readers systematically to [5]. We tried to give precise 
references for the basic terminology and ditalgebra constructions.

2. Central pregeneric tameness

In this section, we recall from [4] and [6] the notion of semipregeneric tameness for 
layered ditalgebras. We introduce the notion of central pregeneric tameness for layered 
ditalgebras. Then, we recall results from [4], with minor adaptations, which will be used 
later.

Definition 2.1. Let A be a layered ditalgebra, with layer (R, W ), see [5, §4]. Given M ∈
A- Mod, denote by EM := EndA(M)op its endomorphism algebra. Then, M admits a 
structure of R-EM -bimodule, where m ·(f0, f1) = f0(m), for m ∈ M and (f0, f1) ∈ EM . 
By definition, the endolength of M , denoted by endol(M), is the length of M as a right 
EM -module.

A module M ∈ A- Mod is called pregeneric iff M is indecomposable, with finite 
endolength but with infinite dimension over the ground field k. A layered ditalgebra A
is called pregenerically tame iff, for each natural number d, there are only finitely many 
isoclasses of pregeneric A-modules with endolength d.

Definition 2.2. Given a layered ditalgebra A and M ∈ A-Mod, write DM = EM/ radEM

and denote by ZM the center of DM . We shall say that the A-module M is centrally 
finite iff DM is a division ring and [DM : ZM ] is finite. In this case, [DM : ZM ] = c2M , 
for some positive integer cM . If M is centrally finite, the central endolength of M is the 
number c- endol(M) = cM × endol(M).

A layered ditalgebra A is called centrally pregenerically tame, if for each d ∈ N there 
is only a finite number of isoclasses of centrally finite pregeneric A-modules with central 
endolength d.
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Notice that every finite-dimensional indecomposable M over a Roiter ditalgebra A, 
with layer (R, W ) such that W1 is a finitely generated R-R-bimodule, is centrally finite, 
see [5, 5.12].

Definition 2.3. Given a layered ditalgebra A and a pregeneric A-module G, we say that 
G is algebraically rigid if, for any algebraic field extension L of k, the AL-module GL is 
pregeneric.

We say that a pregeneric A-module G is algebraically bounded iff there exists a finite 
field extension F of k and a finite sequence of algebraically rigid pregeneric AF-modules 
G1, . . . , Gn such that GF ∼= G1 ⊕ · · · ⊕Gn.

A layered ditalgebra A is called semipregenerically tame if for each d ∈ N there is 
only a finite number of isoclasses of algebraically bounded centrally finite pregeneric 
A-modules with central endolength d.

In the following, we enumerate a series of lemmas which are adaptations of the state-
ments [2, 2.2–2.7].

Lemma 2.4. Assume that ξ : A−−→A′ is a morphism of layered ditalgebras and consider 
the functor Fξ : A′-Mod−−→A-Mod induced by restriction using the morphism ξ. For 
M ∈ A′-Mod, we have endol(Fξ(M)) ≤ endol(M). Moreover:

1. If Fξ is full and faithful, it preserves centrally finite modules and, for a centrally 
finite M ∈ A′-Mod, we have c- endol(Fξ(M)) = c- endol(M);

2. If the morphism ξL = ξ ⊗ 1L : AL−−→A′L induces a full and faithful functor FξL :
A′L-Mod−−→AL-Mod, for any algebraic field extension L of k, then Fξ preserves 
pregeneric modules, algebraically rigid pregeneric modules, and algebraically bounded 
pregeneric modules. In this case, the ditalgebra A′ is centrally pregenerically tame 
whenever A is so;

3. In addition to the assumptions of 2, suppose that A and A′ are seminested, as in [5, 
23.5]. Then, Fξ reflects pregeneric modules, algebraically rigid pregeneric modules, 
and algebraically bounded pregeneric modules.

Proof. Item (1) and the first statement of (2) belong to [4, 2.6]. Item (3) admits es-
sentially the same proof that [4, 2.6(3)], where we use that seminested ditalgebras are 
always Roiter ditalgebras (hence [5, 29.4] can still be applied). �
Reminder 2.5. Following [5], given a ditalgebra A = (T, δ), we denote with a roman 
A the subalgebra [T ]0 of degree zero elements of the underlying graded algebra T
of A, see [5, §1]. Then, the categories A- Mod and A-Mod share the same class of 
objects, but there are more morphisms in A-Mod. There is a canonical embedding 
LA : A- Mod−−→A- Mod which is the identity on objects and LA(f0) = (f0, 0) for 
any f0 ∈ HomA(M, N).
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We recall some terminology from [5] and [1]. Let A = (T, δ) be any ditalgebra with 
layer (R, W ). Assume we have an R-R-bimodule decomposition W0 = W ′

0 ⊕ W ′′
0 with 

δ(W ′
0) = 0. Consider the subalgebra T ′ of T generated by R and W ′ = W ′

0, and the 
subalgebra B of A generated by R and W ′

0. Then, the differential δ on T restricts to a 
differential δ′ on the algebra T ′ and we obtain a new ditalgebra B = (T ′, δ′) with layer 
(R, W ′). A layered ditalgebra B is called a proper subalgebra of A if it is obtained from an 
R-R-bimodule decomposition of W0 as above. The ditalgebra B is essentially an algebra, 
and the module categories B-Mod and B-Mod are canonically identified through the 
functor LB : B- Mod−−→B-Mod.

A proper subalgebra B of a triangular ditalgebra A is called initial when W ′
0 coincides 

with one of the terms of the triangular filtration of W0, see [5, 14.8].
When B is a proper subalgebra of A, the projection π : T−−→T ′ yields a morphism 

of ditalgebras π : A−−→B, hence an extension functor E := Fπ : B- Mod−−→A- Mod.

Lemma 2.6 ([4, (2.8)]). Assume that B is a proper subalgebra of the layered ditalgebra A
and consider the extension functor E : B-Mod−−→A-Mod. Then,

1. The functor E preserves isoclasses and indecomposables. Moreover, for any M ∈
B-Mod, we have endol(E(M)) = endol(M).

2. The functor E preserves pregeneric modules, algebraically rigid pregeneric modules, 
and algebraically bounded pregeneric modules.

3. If A is a Roiter ditalgebra, then M ∈ B-Mod is centrally finite if and only if E(M) ∈
A-Mod is so and, in this case, c- endol(E(M)) = c- endol(M).

Remark 2.7. Given a seminested ditalgebra A over a field k, we shall consider the five 
basic operations A 
→ Az, where z ∈ {d, a, r, e, u}, called deletion of idempotents as in 
[5, 23.14], regularization of a solid arrow as in [5, 23.15], absorption of a loop as in [5, 
23.16], reduction of an edge as in [5, 23.18] and unravelling of a loop as in [5, 23.23], and 
their corresponding reduction functors F z : Az- Mod−−→A-Mod. The functor F z is full 
and faithful (by [5, 8.17, 8.19, 8.20], for z ∈ {a, d, r}, and by [5, 13.5], for z ∈ {e, u}).

Lemma 2.8. Let A be a seminested ditalgebra over a field k. Suppose that Az is obtained 
from A by some basic operation of type z ∈ {a, r, d}. Then, Az is a seminested ditalgebra 
and we have:

1. The functor F z preserves endolength, central endolength, pregeneric modules, al-
gebraically rigid pregeneric modules, and algebraically bounded pregeneric modules. 
Thus, Az is centrally pregenerically tame whenever A is so.

2. The functor F z reflects pregeneric modules, algebraically rigid pregeneric modules, 
and algebraically bounded pregeneric modules.

Proof. (1) This belongs to [4, 2.9 and 2.10].
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(2) In case z = a, F a is the identity functor and our claim is clear. For z ∈ {d, r}, we 
need to keep in mind that Az is seminested, in order to apply (2.4)(3) to the canonical 
projection ξ : A−−→Az, since F z = Fξ. �
Lemma 2.9. Let A be a seminested ditalgebra over a perfect field k with layer (R, W ). Let 
AX be the layered ditalgebra obtained from A by reduction, using a complete triangular 
admissible B-module X, for some proper subalgebra B of A, and consider the associated 
full and faithful functor FX : AX-Mod−−→A-Mod, see [5, 12.10 and 13.5]. Suppose 
that the layer (S, WX) of AX is seminested and that, for each algebraic field extension 
L of k, the B-module X extends to L, as in [5, 20.8], and the admissible BL-module XL

is complete. Then,

1. For all N ∈ AX-Mod, we have that N is centrally finite iff FX(N) is so and, in this 
case, {

c- endol(N) ≤ c- endol(FX(N))
c- endol(FX(N)) ≤ rankXS × c- endol(N)

2. The functor FX preserves and reflects pregeneric modules, algebraically rigid pre-
generic modules, and algebraically bounded pregeneric modules.

Proof. Without the “c”, statement (1) follows from [5, 25.7], taking E = EndAX (N)op.
Our assumption requiring that for each algebraic field extension L of k we have that 

X̂ = XL is complete gives that F
X̂

: ALXL - Mod−−→AL- Mod is full and faithful.
The proof of (2) is similar to the proof of [4, 2.11]: we use [5, 20.11] and the fact that 

seminested ditalgebras are Roiter ditalgebras in order to permit the application of [5, 
29.4]. �
Remark 2.10. The last lemma applies to the functor F z : Az- Mod−−→A-Mod, when A
is a seminested ditalgebra over a perfect field k and Az is obtained from A by some basic 
operation of type z ∈ {e, u}, see [5, 23.18] and [5, 23.23]. We use [5, 20.9] to guarantee 
that the B-module X associated with each one of these reductions extends to L, for each 
algebraic field extension L of k.

Let us recall some usual notation.

Notation 2.11. Given a finite-dimensional algebra Λ over any field k, denote by P(Λ) the 
category of morphisms between projective Λ-modules. If we write J := radΛ, then P1(Λ)
denotes the full subcategory of P(Λ) whose objects are the morphisms α : P−−→Q with 
image contained in JQ, and P2(Λ) denotes the full subcategory of P1(Λ) whose objects 
are the morphisms α : P−−→Q with kernel contained in JP . If Λ splits over its radical, 
we can consider the Drozd’s ditalgebra D = DΛ, as in [5, 19.1], and the usual equivalence 
functor ΞΛ : D-Mod−−→P1(Λ), see [5, 19.8].
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Lemma 2.12 ([4, (2.14)]). Given a finite-dimensional algebra Λ, over any field k, which 
splits over its radical, consider the Drozd’s ditalgebra D = DΛ, the usual equivalence 
functor ΞΛ : D-Mod−−→P1(Λ), and the cokernel functor Cok : P1(Λ)−−→Λ-Mod. 
Assume that N ∈ D-Mod and M ∈ Λ-Mod are such that ΞΛ(N) ∈ P2(Λ) and M ∼=
Cok ΞΛ(N). Then,

1. The D-module N is centrally finite iff the Λ-module M is so. In this case, we have 
the following inequalities:

{
c- endol(N) ≤ (1 + dimk Λ) × c- endol(M)
c- endol(M) ≤ dimk Λ × c- endol(N)

2. If k is perfect, the module N is an algebraically rigid (resp. algebraically bounded) 
pregeneric D-module iff the module M is an algebraically rigid (resp. algebraically 
bounded) generic Λ-module.

Corollary 2.13. Let Λ be a finite-dimensional algebra over a perfect field k. Then, the alge-
bra Λ is centrally generically tame iff its Drozd’s ditalgebra D is centrally pregenerically 
tame.

Proof. Similar to the proof of [2, 4.5], using (2.12) instead of [2, 4.4]. �
3. Constructibility and wildness

In this section we consider a special type of ditalgebras, which can be constructed 
from finite-dimensional algebras over perfect fields. We show some properties of their 
pregeneric modules which follow from the corresponding properties for generic modules 
over finite-dimensional algebras. Then, we consider the notions of sharp wildness and 
endosharp wildness for layered ditalgebras and we show some examples.

Definition 3.1. Let A = (T, δ) be a triangular ditalgebra with layer (R, W ) over a field k. 
Assume that W is finitely generated as an R-R-bimodule. Then, A is called elementary
iff R ∼= k × · · · × k, a finite product of copies of the field k. The ditalgebra A is called 
semielementary iff R ∼= Mn1(k) × · · · ×Mnt

(k), a finite product of matrix algebras over 
the field k.

Remark 3.2. Assume that Λ is a finite-dimensional algebra over a perfect field k. Then, 
we have a splitting Λ = S

⊕
J over its radical J , and we can consider the corresponding 

layered ditalgebra DΛ, see [5, 19.1]. Since k is perfect, there is a finite field extension L
of k such that (DΛ)L is semielementary, then we can consider its basification (DΛ)Lb, as 
in [2, 3.3], which is an elementary ditalgebra (in particular, a seminested ditalgebra).
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Definition 3.3. Given a perfect field k and a finite field extension L of k, a seminested 
L-ditalgebra A is called L-constructible iff for some finite-dimensional k-algebra Λ we 
have that the scalar extension DL of the Drozd’s ditalgebra D = DΛ is semielementary 
and there is a finite sequence of reductions

DLb 
−→ DLbz1 
−→ DLbz1z2 
−→ · · · 
−→ DLbz1···zt ,

and there is an isomorphism of layered ditalgebras DLbz1···zt ∼= A, for some finite set of 
reductions DLbz1···zi−1 
−→ DLbz1···zi of either of the types: absorption of a loop as in 
[5, 23.16], deletion of idempotents as in [5, 23.14], regularization as in [5, 23.15], edge 
reduction as in [5, 23.18], and unravelling as in [5, 23.23]. In this case, we also say that 
A is L-constructible from Λ.

Lemma 3.4. If a seminested ditalgebra A is L-constructible (from some finite-dimensional 
k-algebra Λ) over the perfect field k, then AF is F-constructible (from the same 
k-algebra Λ) for any finite field extension F of L.

Proof. Recall first that given a seminested ditalgebra B over a perfect field L, a finite field 
extension F of the field L, and z ∈ {a, r, d, e, u}, we have from [5, 20.4, 20.5, 20.6, 20.7, 
20.11] and (2.10) the existence of an isomorphism of layered ditalgebras ξz : BFz−−→BzF, 
which we shall consider an identification. We also need to keep in mind the meaning of 
the basification of a semielementary ditalgebra B = DΛL with layer (R, W ) such that 
R ∼= Mn1(L) ×· · ·×Mnt

(L); here Bb = BX , where X is the direct sum X = X1⊕· · ·⊕Xt, 
where each Xj is a representative of the simple Mnj

(L)-module, see [2, 3.3], hence RF ∼=
Mn1(F) × · · · × Mnt

(F), and XF ∼= XF

1 ⊕ · · · ⊕ XF

t , where each XF

j is a representative 

of the simple Mnj
(F)-module. Thus we have the basification BF 
→ BFb = BF(XF) and 

this last ditalgebra is canonically identified with BbF = (BX)F, see [5, 20.11]. Then, from 
the sequence in the Definition 3.3, after a scalar extension by F, we obtain the following 
sequence of ditalgebras and reductions:

DLbF DLbz1F · · · DLbz1···ztF ∼= AF

‖ ‖ · · · ‖ ‖
DFb 
→ DFbz1 
→ · · · 
→ DFbz1···zt ∼= AF

Thus, the seminested F-ditalgebra AF is F-constructible from the finite-dimensional 
k-algebra Λ.

Notice that the basification functor F b = FX : (DΛL)b- Mod−−→DΛL - Mod induces 
when extended to F the basification functor F b : (DΛF)b-Mod−−→DΛF- Mod (modulo 
the identifications pointed out above). �
Theorem 3.5. Assume that A is an L-constructible seminested ditalgebra over a perfect 
field k. Then, for any pregeneric A-module G, the algebra EndA(G) is local and has 
nilpotent radical.
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Proof. This proof is similar to the proof of [3, 2.6]. We give the details. From [9, 4.2 and 
4.4], the generic Λ-modules have local endomorphism algebras with nilpotent radical. 
Adopt the notation of Definition (3.3). From [5, 20.13], we can identify the L-ditalgebra 
(DΛ)L with DΛL . Then, we can proceed as in the proof of [3, 2.6], to show that any 
pregeneric DL-module G, the algebra End(DΛ)L(G) is local and has nilpotent radical. 
From [2, 3.3], we have the corresponding statement for (DL)b, where D := DΛ.

Consider the isomorphism of layered ditalgebras ξ : DLbz1···zt−−→A as an iden-
tification and, for i ∈ [1, t], consider the corresponding reduction functor Fi :
DLbz1···zi -Mod−−→DLbz1···zi−1- Mod. Then, the composition

F1F2 · · ·Ft : A- Mod−−→DLb- Mod

is a full and faithful functor which preserves pregeneric modules. Indeed, this is the case 
for each one of the factors, for instance, by (2.8) and (2.10). �
Proposition 3.6. Let A be an L-constructible seminested ditalgebra over a perfect field k
and take any field extension F of L. Assume that M, N ∈ A-Mod satisfy that MF and 
NF have a common non-zero direct summand. If M is an endofinite indecomposable, 
then M is a direct summand of N in A-Mod.

Proof. This proof is similar to the proof of [3, 3.4]: first notice that Lemmas 3.2 and 3.3 
in [3] hold (with almost the same proofs: we just have to replace the chosen k-basis for Z0

by a finite generating set of the R-module Z0) if we substitute in the hypothesis “almost 
admissible” by “seminested”. Then, if M has infinite dimension, we can apply (3.5); if 
M is finite-dimensional, we can apply [5, 5.12]. �
Definition 3.7. Let A and B be layered ditalgebras over any field k. Then, a k-functor 
F : A-Mod−−→B-Mod is called sharp (resp. endosharp) iff F preserves indecompos-
ables (resp. endofinite indecomposables), isomorphism classes of indecomposables (resp. 
of endofinite indecomposables), and induces isomorphisms DM

∼= DFM , for each inde-
composable (resp. endofinite indecomposable) A-module M .

A layered ditalgebra A over a field k is sharply wild (resp. endosharply wild) iff there 
is an A-k〈x, y〉-bimodule Z, which is free of finite rank by the right and such that the 
following composition functor is sharp (resp. endosharp)

k〈x, y〉- Mod
Z⊗k〈x,y〉−−−−−−−−−−→A-Mod LA−−−→A- Mod .

We say that the bimodule Z realizes the sharp wildness (resp. realizes the endosharp 
wildness) of A. A layered ditalgebra A over a field k is called almost sharply wild (resp. 
almost endosharply wild) iff there is a finite field extension F of k such that AF is sharply 
wild (resp. endosharply wild).
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Remark 3.8.

1. Any composition of sharp (resp. endosharp) functors is sharp (resp. endosharp).
2. Every sharp functor F : B- Mod−−→A-Mod preserving endofinite indecomposables 

is endosharp. In particular, any full and faithful k-functor F : B- Mod−−→A- Mod
preserving endofinite modules is endosharp. This is the case of every reduction func-
tor F z : Az- Mod−−→A-Mod of type z ∈ {a, r, d, e, u}, by (2.4), (2.7), (2.8), and 
(2.10).

Lemma 3.9. Any sharply wild (or endosharply wild) layered ditalgebra A over a perfect 
field is not centrally pregenerically tame.

Proof. This proof is essentially the same that the proof of [2, 2.9], since the functor 
considered there is sharp (resp. endosharp). �
Lemma 3.10. Assume that B is a proper subalgebra of the Roiter ditalgebra A. Then, the 
corresponding extension functor E : B-Mod−−→A-Mod is sharp and endosharp.

Proof. This follows from [11, 4.4] and (2.6). �
Lemma 3.11. Assume that the seminested ditalgebra Az is obtained from the seminested 
ditalgebra A by a basic operation of type z ∈ {a, r, d, e, u}. Then, if Az is almost sharply 
wild (resp. almost endosharply wild), so is A.

Proof. We show first that if Az is sharply (resp. endosharply) wild, so is A. Assume, Az

is sharply (resp. endosharply) wild, so there is an Az-k〈x, y〉-bimodule Z, which is free 
of finite rank as a right k〈x, y〉-module, such that the following composition functor is 
sharp (resp. endosharp):

k〈x, y〉- Mod
Z⊗k〈x,y〉−−−−−−−−−→Az-Mod LAz−−−→Az- Mod .

For z ∈ {a, r, d}, the canonical morphism of ditalgebras φ : A−−→Az induces by 
restriction the full and faithful functor F z = Fφ : Az- Mod−−→A- Mod. By [5, 5.12], F z

preserves indecomposability and isomorphism classes. From [5, 22.7], we know that the 
following diagram commutes up to isomorphism

k〈x, y〉- Mod
Z⊗k〈x,y〉−−−−−−−−→ Az- Mod LAz−−→ Az-Mod

‖
⏐⏐⏐⏐�

⏐⏐⏐⏐�Fφ

k〈x, y〉- Mod
Fφ(Z)⊗k〈x,y〉−−−−−−−−−−−→ A-Mod LA−−→ A-Mod .

Hence, the lower composition of functors is sharp (resp. endosharp) and we just have to 
notice that the A-k〈x, y〉-bimodule Fφ(Z) is free of finite rank as a right k〈x, y〉-module.
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For z ∈ {e, u}, Az is defined as a ditalgebra AX obtained from A by reduction using 
a special type of complete B-module X, for a suitable initial subalgebra B of A. By 
[5, 13.5] the functor F z = FX is full and faithful. Then, again from [5, 5.12], we know 
that F z is sharp and we proceed as before. We recall that F z(Z) is finitely generated 
projective as a right k〈x, y〉-module and hence, from [5, 22.6], also free.

Now, assume that Az is almost sharply wild (resp. almost endosharply wild), so there 
is a finite field extension F of k such that AzF is sharply wild (resp. endosharply wild). 
Then, recall that from [5, 20.4, 20.5, 20.6, 20.11], we can identify AzF with AFz. Then, 
the preceding statement applied to the seminested F-ditalgebra AF, gives that AF is 
sharply wild (resp. endosharply wild), and we are done. �

Proposition 3.12. Assume that we have non-scalar elements f(x) ∈ k[x] and g(y) ∈ k[y]. 
We say that an element r(x, y) ∈ k[x, y]f(x)g(y) admits an f(x)g(y)-zero iff there exist 
λ, μ ∈ k with f(λ) �= 0, g(μ) �= 0, and r(λ, μ) = 0. The following hold.

1. Any element r(x, y) ∈ k[x, y]f(x)g(y) \ {0} can be written as r(x, y) = ur0(x, y), 
where r0(x, y) ∈ k[x, y] has no irreducible factor in common with f(x)g(y) and u is 
an invertible element in k[x, y]f(x)g(y).

2. Any r(x, y) ∈ k[x, y]f(x)g(y) which admits an f(x)g(y)-zero must be a non-invertible 
element in k[x, y]f(x)g(y).

3. Given a non-zero r(x, y) ∈ k[x, y]f(x)g(y), there is either a finite field extension F0

of k such that r(x, y) is invertible in F[x, y]f(x)g(y) for any finite field extension F of 
F0, or else there is a finite field extension F1 of k such that r(x, y) ∈ F[x, y]f(x)g(y)

admits an f(x)g(y)-zero for any finite field extension F of F1.

Proof. (1) and (2) are taken from [5, 24.4].
(3) Let K be an algebraic closure of k. If r(x, y) is invertible in K[x, y]f(x)g(y) then 

r(x, y)s(x, y) = 1, for some s(x, y) ∈ K[x, y]f(x)g(y). Then, there is a finite field extension 
F0 of k such that s(x, y) ∈ F0[x, y]f(x)g(y), and r(x, y) is invertible in F[x, y]f(x)g(y) for 
any finite field extension F of F0.

If r(x, y) is not invertible in K[x, y]f(x)g(y), we can apply (1) and write r(x, y) =
ur0(x, y), where r0(x, y) ∈ K[x, y] has no irreducible factor in common with f(x)g(y)
and u is an invertible element in K[x, y]f(x)g(y).

For any h ∈ K[x, y], we write Z(h) := {(λ, μ) ∈ K
2 | h(λ, μ) = 0}. Then, from 

Bezout’s theorem, we know that the set Z(r0(x, y)) 
⋂
Z(f(x)g(y)) is finite.

Given (λ, μ) ∈ K
2, it is clear that f(λ) �= 0 and g(μ) �= 0 iff (λ, μ) �∈ Z(f(x)g(y)).

Since K is algebraically closed, r0(x, y) has infinitely many zeros (λ, μ) ∈ K
2, and we 

can choose such a zero (λ, μ) in K2 \ [Z(r0(x, y)) ∩ Z(f(x)g(y))]. Then, we can take the 
finite field extension F1 = k(λ, μ, c1, . . . , cz) of k, where c1, . . . , cz ∈ K are the algebraic 
elements present in u and r0. �
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Theorem 3.13. Critical ditalgebras, as defined in [5, 24.5] over any field, are sharply wild 
and endosharply wild.

Proof. For sharp wildness this was already noticed in the proof of [11, 4.6] for alge-
braically closed fields. The argument in the general case is the same. Namely, let C be 
a critical ditalgebra over a field k. Review carefully the development of [5, §24] and no-
tice that it already contains the construction of a C-k〈x, y〉-bimodule B0 such that the 
functor LC(B0 ⊗k〈x,y〉 −) : k〈x, y〉- Mod−−→C- Mod is sharp and endosharp: the functor 
that produces the wildness of the star algebra in [5, 30.2] is full and faithful, and for 
the extension functor involved we apply (3.10). Also, B0 is free of finite rank as a right 
module, see [5, 22.7]. �
Corollary 3.14. Assume that A is a seminested ditalgebra, over any field k, with differ-
ential δ and layer (R, W ). The following hold.

1. If δ(α) = 0 for some solid arrow α with either Res(α) �∼= k or Ret(α) �∼= k, then A is 
almost sharply wild and almost endosharply wild.

2. If δ(α) = cv, for some solid arrow α, some dotted arrow v, and some non-zero 
element c ∈ C := Ret(α) ⊗k Res(α), where Ret(α) �∼= k and Res(α) �∼= k, then either A
is almost sharply wild and almost endosharply wild or there is a finite field extension 
F0 of k such that for any finite field extension F of F0, the element c ⊗1 is invertible 
in CF and δF(α⊗ 1) = (c ⊗ 1)(v ⊗ 1).

Proof. After deleting all the vertices of A different from t(α) and s(α), if necessary, 
and using (3.11), we can assume that A has only the points t(α) and s(α) (which may 
coincide). In case 1, there is a finite field extension F of k such that AF is a critical 
ditalgebra of one of the types (3) or (4) listed in [5, 24.5]. Thus, in this case A is almost 
sharply wild and almost endosharply wild. In case 2, by (3.12), either there is a finite 
field extension F of k such that AF is a critical ditalgebra of one of the types (1) or (2) 
listed in [5, 24.5], hence A is almost sharply wild and almost endosharply wild, or we 
are in the situation described in the second part of item 2. �
4. Central endolength and scalar extension

In this section we recollect some facts on the behavior of the central endolength of 
centrally finite endofinite indecomposable modules over constructible ditalgebras, under 
finite field extension. They are obtained from the corresponding statements for finite-
dimensional algebras proved in [11].

Theorem 4.1. Let A be a seminested ditalgebra with layer (R, W ), over a perfect field 
k, and M a finite-dimensional indecomposable A-module. Then, there is a Galois field 
extension F0 of k such that, for any Galois field extension F of F0, we have that the 
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decomposition MF ∼= M1 ⊕ · · · ⊕Mt of MF as direct sum of indecomposables in AF-mod
satisfies DMj

∼= F and endol(Mj) = c- endol(Mj) = c- endol(M), for all j ∈ [1, t]. 
Moreover, if e ∈ R is any idempotent, eF = e ⊗ 1 is the induced idempotent in RF, and 
j ∈ [1, t], we have �EMj

(eFMj) = cM × �EM
(eM).

Proof. This proof is similar to the proof of [4, 4.10(1)]. We need to have in mind that 
endomorphism algebras of finite-dimensional A-modules are local finite-dimensional be-
cause A is seminested and we have [5, 5.13]. We also use that the canonical map 
α : (EM )F−−→EMF is an isomorphism of algebras, see [4, 4.12]. �
Definition 4.2. Assume that A is a seminested ditalgebra with layer (R, W ) and let 
1 =

∑n
i=1 ei be the decomposition of the unit of R as a sum of centrally orthogonal 

primitive idempotents. Then, for M ∈ A-Mod, the support of M is the set of idempotents 
ei with eiM �= 0. The A-module M is called sincere iff eiM �= 0, for all i ∈ [1, n].

Define the endolength vector of M by �e(M) = (�e1(M), . . . , �en(M)), where �ei (M) =
�EM

(eiM), for i ∈ [1, n]. If M is centrally finite, define the central endolength vector of 
M by c-�e(M) = cM × �e(M). Thus the endolength and the central endolength of M
are, respectively, endol(M) =

∑n
i=1 �

e
i (M) and c- endol(M) =

∑n
i=1 c-�ei (M).

Corollary 4.3. Assume that A is a seminested ditalgebra over a perfect field k. Then, for 
any finite-dimensional indecomposable A-module M and any finite field extension L of 
k, in the decomposition ML ∼= M1 ⊕ · · · ⊕Mt of the AL-module ML as a direct sum of 
indecomposables, we have that c- endol(M) = c- endol(Mj) and c-�e(M) = c-�e(Mj), for 
all j ∈ [1, t].

Proof. This proof is similar to the proof of [4, 4.11], where we use (4.1) instead of [4, 
4.10]. Similarly, the equality on the central endolength vectors follows from (4.1) when 
applied to the idempotents e1, . . . , en as in the last definition, first for a Galois field 
extension of F of k containing L, then to the Galois field extension F of L, and then 
comparing the indecomposable modules appearing in both applications. �
Proposition 4.4. Assume that A is an L-constructible seminested ditalgebra over a perfect 
field k. Let G be a pregeneric A-module and F a finite field extension of L. Then

1. GF ∼= m1G1 ⊕ · · · ⊕mtGt, where m1, . . . , mt ∈ N and G1, . . . , Gt are pairwise non-
isomorphic pregeneric AF-modules.

2. The module G is centrally finite iff Gj is centrally finite for some j ∈ [1, t]. In this 
case we also get that

dimZG
(DG) = m2

i × dimZGi
(DGi

) , for each i ∈ [1, t].

Proof. Since A is L-constructible from a finite-dimensional k-algebra Λ, there is a functor 
F : A-Mod−−→(DΛ)Lb- Mod, given as a composition of functors of type F a, F d, F r, F e, 
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Fu, Fξ associated to the basic operations: absorption of a loop, deletion of idempotents, 
regularization of an arrow, edge reduction, and unravelling, or replacement of a layered 
ditalgebra by an isomorphic one, see (3.3) and (2.4). From [5, 20.4, 20.5, 20.6, 20.11, 
20.12, and 20.13], we have the following diagram which commutes up to isomorphism,

AF- Mod F̂−−→ (DΛF)b-Mod F b̂

−−→ DΛF-Mod
Cok ΞΛF−−−−−→ ΛF- Mod
⏐⏐⏐⏐ (−)F


⏐⏐⏐⏐ (−)F

A-Mod F−−→ (DΛL)b- Mod F b

−−→ DΛL- Mod
Cok ΞΛL−−−−−→ ΛL- Mod

where F̂ is the composition of the functors induced by the functors appearing in the 
factorization of F : they are again of type F a, F d, F r, F e, Fu or Fξ, and F b̂ is the 
corresponding basification equivalence. They all preserve pregeneric modules. Moreover, 
Fξ, F d, and F r preserve central endolength, and Fu, F e, F b behave towards central 
endolength as described in (2.9).

Let G be a pregeneric A-module, then H := Cok ΞΛLF bF (G) is a generic ΛL-module 
and, applying [11, 2.18(b) and 2.14(c)], we get HF ∼= m1H1 ⊕ · · · ⊕ mtHt, for some 
m1, . . . , mt ∈ N and some pairwise non-isomorphic generic ΛF-modules H1, . . . , Ht.

Since Cok ΞΛFF b̂F̂ (GF) ∼=
[
Cok ΞΛLF bF (G)

]F ∼= HF, using that the functor 
Cok ΞΛFF b̂F̂ reflects isomorphisms and [5, 29.4], we get AF-modules G1, . . . , Gt with 
GF ∼= m1G1 ⊕ · · · ⊕ mtGt and Cok ΞΛFF b̂F̂ (Gj) ∼= Hj , for each j ∈ [1, t]. Then, using 
that the functors F z reflect pregeneric modules, we know that each Gj is pregeneric, 
and we have proved (1).

We also know from [11, 2.18(b)] that H is centrally finite iff Hj is so for some j. 
Then, using the fact that the functor Cok ΞΛFF b̂F̂ is sharp, because it is a composition 
of sharp functors, we know that G is centrally finite iff H is so, iff Hj is so, iff Gj is so. 
The formula dimZH

(DH) = m2
i × dimZHi

(DHi
) for each i, established in the proof of 

[11, 2.18], gives the formula in (2) using again that the functor CokΞΛFF b̂F̂ is sharp. �

Proposition 4.5. Assume that A is an L-constructible seminested ditalgebra over a per-
fect field, let F be a finite field extension of L, and consider the corresponding scalar 
restriction functor Fξ : AF-Mod−−→A-Mod. Let H be a pregeneric AF-module. Then

1. Fξ(H) ∼= H1 ⊕ · · · ⊕Ht, where H1, . . . , Ht are pregeneric A-modules.
2. There is i0 ∈ [1, t] such that the module H is a direct summand of HF

i0
.

Proof. This proof is similar to the previous one, but we use scalar restrictions instead of 
scalar extensions. Namely, we consider the following diagram which, by [4, §3], commutes 
up to isomorphism
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AF- Mod F̂−−→ (DΛF)b- Mod F b̂

−−→ DΛF- Mod
Cok ΞΛF−−−−−→ ΛF- Mod⏐⏐⏐⏐�Fξ

⏐⏐⏐⏐�Fξ0

A-Mod F−−→ (DΛL)b-Mod F b

−−→ DΛL -Mod
Cok ΞΛL−−−−−→ ΛL- Mod

where F and F̂ are compositions of functors of type F z, where z ∈ {a, r, d, e, u} or 
induced by isomorphisms of layered ditalgebras, F b and F b̂ are the corresponding basi-
fication equivalences, and Fξ0 is the restriction functor. All the functors represented by 
horizontal arrows in the diagram preserve and reflect pregeneric modules.

Let H be a pregeneric AF-module, then G := Cok ΞΛFF b̂F̂ (H) is a generic ΛF-module 
and, applying [11, 2.15], we get Fξ0(G) ∼= G1 ⊕ · · · ⊕ Gt, for some generic ΛL-modules 
G1, . . . , Gt, and G is a direct summand of GF

i0
for some i0 ∈ [1, t].

Since Cok ΞΛLF bFFξ(H) ∼= Fξ0 Cok ΞΛFF b̂F̂ (H) ∼= Fξ0(G), using that the functor 
Cok ΞΛLF bF reflects isomorphisms and [5, 29.4], we get A-modules H1, . . . , Ht with 
Fξ(H) ∼= H1 ⊕ · · · ⊕Ht and Cok ΞΛLF bF (Hj) ∼= Gj , for each j ∈ [1, t]. Then, using that 
the functors F z reflect pregeneric modules, we know that each Hj is pregeneric, and we 
have proved (1).

If we write Φ = Cok ΞΛFF b̂F̂ , from the diagram in the last proof, we know 
that Φ(HF

i0
) ∼= GF

i0
. Since G is a direct summand of GF

i0
, there are morphisms s :

Φ(H)−−→Φ(HF

i0
) and p : Φ(HF

i0
)−−→Φ(H) such that ps is an isomorphism. Then, there 

are morphisms s′ : H−−→HF

i0
and p′ : HF

i0
−−→H such that p′s′ is an isomorphism. So H

is a direct summand of HF

i0
. �

Theorem 4.6. Let A be an L-constructible seminested ditalgebra over a perfect field k, G
an endofinite indecomposable A-module, and F a finite field extension of L. Then GF ∼=
m1G1 ⊕ · · · ⊕mtGt, where m1, . . . , mt ∈ N and G1, . . . , Gt are pairwise non-isomorphic 
endofinite indecomposable AF-modules. Moreover,

1. The A-module G is pregeneric iff each AF-module Gj is so.
2. The module G is centrally finite iff each Gj is so and, in this case,

c- endol(Gj) = c- endol(G) and c-�e (Gj) = c-�e (G) for each j ∈ [1, t].

Proof. If G is an endofinite indecomposable A-module, then either G is finite-dimensional 
or G is pregeneric. Then, we obtain the wanted decomposition GF ∼= m1G1⊕· · ·⊕mtGt, 
for instance, from (4.3) and (4.4). Now, (1) is clear if we keep in mind (4.4)(1).

From [4, 4.12], (3.5), and [4, 4.9(1)], we have endol(Gj) = mj × endol(G), for each 
j ∈ [1, t]. Then, in case G is pregeneric, we get from (4.4)(2), that G is centrally finite 
iff each Gj is so, and in this case c- endol(G) = c- endol(Gj) for each j ∈ [1, t]. In case G
is finite-dimensional, the corresponding statement follows from (4.3).

Since A is seminested, we have the canonical decomposition 1 =
∑n

i=1 ei as sum of 
centrally primitive orthogonal idempotents of R (where (R, W ) is the layer of A), and 
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then 1 =
∑n

i=1 e
F

i , where eFi = ei ⊗ 1, is the corresponding canonical decomposition of 
the unit of RF (where (RF, W F) is the layer of AF). Then, from [4, 4.9] and (4.4)(2), we 
obtain when G is centrally finite that c-�e (Gj) = c-�e (G) for each j ∈ [1, t]. �
Definition 4.7. Given a seminested ditalgebra A and a positive integer d, we consider the 
class MA(d) formed by all the finite-dimensional indecomposable A-modules M such 
that c- endol(M) ≤ d. We will also consider the class HA(d) formed by all the centrally 
finite pregeneric A-modules H such that c- endol(H) ≤ d.

Corollary 4.8. Let A be an L-constructible seminested ditalgebra over a perfect field and 
F a finite field extension of L. Then, for any d ∈ N, HAF(d)/ ∼= is finite iff HA(d)/ ∼= is 
finite.

Proof. The same proof given in [11, 2.19] works here, now using centrally finite pregeneric 
modules, (4.5), (4.6), and (3.6). �
Proposition 4.9. Let A be an L-constructible seminested ditalgebra over a perfect field 
and F a finite field extension of L. Then, AF is centrally pregenerically tame iff A is so. 
Hence, if A is centrally pregenerically tame, it is not almost sharply wild and it is not 
almost endosharply wild.

Proof. The statement follows from the preceding Corollary and (3.9). �
5. Reduction

We shall see now how the centrally finite endofinite indecomposables with bounded 
central endolength, over constructible ditalgebras, can be parametrized, modulo finite 
field extensions, over a finite family of rational algebras. We adapt the original strategy 
of Drozd (see also [7] and [5]) enriched with some ideas of [4].

Definition 5.1. Assume that A is a seminested ditalgebra with layer (R, W ) and let 
1 =

∑n
i=1 ei be the decomposition of the unit of R as a sum of centrally orthogonal 

primitive idempotents. Denote by B0 a fixed basis of the freely generated R-R-bimodule 
W0 and by Pmk the set of marked points of A, respectively, see [5, 23.9]. If M ∈ A- Mod
is endofinite, the endonorm of M is the number

||M ||e =
∑
α∈B0

�et(α)(M)�es(α)(M) +
∑

i∈Pmk

�ei (M)2.

Consequently, for �e = (�e1, . . . , �en) ∈ Z
n, with non-negative entries, its endonorm is 

defined by ||�e||e =
∑

α∈B0
�et(α)�

e
s(α) +

∑
i∈Pmk

(�ei )2.
If M ∈ A- Mod is endofinite and centrally finite, then its central endonorm is defined 

by
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||M ||c := c2M × ||M ||e.

Notice that the endonorm introduced here for seminested ditalgebras is different from 
the endonorm used in [4] for admissible ditalgebras. But if A is admissible and sem-
inested, it is elementary and both endonorms coincide.

Proposition 5.2. Assume that A is an L-constructible seminested ditalgebra over a per-
fect field k. Then, for any endofinite indecomposable A-module G and any finite field 
extension F of L, in the decomposition GF ∼= G1 ⊕ · · · ⊕ Gt of the AF-module GF as a 
direct sum of indecomposables we have that: G is finite-dimensional (resp. pregeneric, 
centrally finite) iff so are G1, . . . , Gt. Moreover, in the centrally finite case, we have 
||G||c = ||Gi||c, for all i ∈ [1, t].

Proof. This follows from (4.6). �
Proposition 5.3. Let A be a seminested ditalgebra with layer (R, W ), over a perfect field k. 
Let F z : Az-Mod−−→A-Mod be the functor associated to the reduction A 
→ Az of 
one of the types: replacement of a layered ditalgebra by an isomorphic one, absorption 
of a loop, deletion of idempotents, regularization of a solid arrow, edge reduction, or 
unravelling. For N ∈ Az-Mod, assume that F z(N) has finite endolength and is centrally 
finite, then we have:

1. ||N ||c = ||Fξ(N)||c in case ξ : A−−→Az is an isomorphism of layered ditalgebras;
2. ||N ||c = ||F a(N)||c in the absorption case;
3. ||N ||c = ||F d(N)||c in the deletion of idempotents case;
4. ||N ||c ≤ ||F r(N)||c in the regularization case, where the inequality is strict whenever 

F r(N) is sincere;
5. ||N ||c ≤ ||F e(N)||c in the case of edge reduction, where the inequality is strict when-

ever F e(N) is sincere.
6. ||N ||c ≤ ||Fu(N)||c in the case of unravelling at a point i0 using λ1, . . . , λq, where 

the inequality is strict whenever g(x) = (x − λ1) · · · (x − λq) does not act invertibly 
on Fu(N).

Proof. Make M := F z(N), and recall that F z is full and faithful, thus we have an 
isomorphism EN−−→EM induced by F z. Make E := EM . Then: if z = a, our claim is 
trivial, see [5, 25.2]; if z = r, our claim follows from the argument in the proof of [5, 
25.3]; if z = d, our claim is clear, see [5, 25.4]; if z = e, our claim follows by the argument 
in the proof of [5, 25.8]; if z = u, our claim follows by the argument in the proof of [5, 
25.9]; our first item is clear. �
Definition 5.4. Let A be a seminested ditalgebra. For any positive number d ∈ N and 
any non-negative integer t, we consider the following:
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1. The symbol MA(d, t) will denote the subclass of MA(d) formed by the modules 
M ∈ MA(d) with ||M ||c ≤ t. We denote by M0

A(d) (resp. M0
A(d, t)) the subclass 

of MA(d) (resp. MA(d, t)) formed by the sincere modules in MA(d) (resp. sincere 
modules in MA(d, t)).

2. The symbol HA(d, t) will denote the subclass of HA(d) formed by the modules H ∈
HA(d) with ||H||c ≤ t. We denote by H0

A(d) (resp. H0
A(d, t)) the subclass of HA(d)

(resp. HA(d, t)) formed by the sincere modules in HA(d) (resp. sincere modules in 
HA(d, t)).

We shall say that a seminested ditalgebra A is (d, t)-trivial (resp. sincerely (d, t)-trivial) 
iff there is only a finite number of isoclasses of modules in MA(d, t) (resp. in M0

A(d, t)) 
and HA(d, t) (resp. H0

A(d, t)) is empty.

Remark 5.5. Given a seminested ditalgebra A and d ∈ N, there is a positive integer t
such that MA(d) = MA(d, t), M0

A(d) = M0
A(d, t), HA(d) = HA(d, t), and H0

A(d) =
H0

A(d, t). Indeed, there is only a finite number of endolength vectors �e and natural 
numbers c with c ×

∑
i �

e
i ≤ d, thus there are only a finite number of possibilities for 

�e(M) and cM for any M ∈ MA(d) 
⋃
HA(d). Then, there is only a finite number of 

possibilities for the number c2M × ||M ||e, when M runs in MA(d) 
⋃

HA(d). We can 
choose as t any integer upper bound of these numbers.

Proposition 5.6. Let A be an L-constructible seminested ditalgebra over a perfect field k. 
Take d ∈ N and t ≥ 0. Then, for any finite field extension F of L, we have:

1. MAF(d, t)/ ∼= is finite iff MA(d, t)/ ∼= is finite. Similarly, M0
AF(d, t)/ ∼= is finite iff 

M0
A(d, t)/ ∼= is finite.

2. HA(d, t) �= ∅ iff HAF(d, t) �= ∅, and H0
A(d, t) �= ∅ iff H0

AF(d, t) �= ∅.
3. The F-ditalgebra AF is (d, t)-trivial (resp. sincerely (d, t)-trivial) iff the L-ditalgebra 

A is (d, t)-trivial (resp. sincerely (d, t)-trivial).

Proof. Consider the scalar restriction functor Fξ : AF- Mod−−→A-Mod.
(1) We show first that any (resp. sincere) N ∈ MAF(d, t) is a direct summand of MF

for some (resp. sincere) M ∈ MA(d, t). Given N ∈ MAF(d, t), we have a decomposition 
Fξ(N) ∼= M1 ⊕ · · · ⊕ Mu as a direct sum of indecomposables in A-mod, and we have 
decompositions MF

i
∼= Ni,1⊕· · ·⊕Ni,vi as direct sum of indecomposables in AF-mod. By 

[3, 3.7], we know that N is a direct summand of Fξ(N)F ∼= MF

1 ⊕· · ·⊕MF

u . Thus, N ∼= Ni,j

for some i, j. Then, from (4.6) and (5.2), we obtain c- endol(Mi) = c- endol(Ni,j) =
c- endol(N) ≤ d and ||Mi||c = ||Ni,j ||c = ||N ||c ≤ t. Thus, Mi ∈ MA(d, t). If N is 
sincere, so is Ni,j and MF

i , thus Mi is also sincere. Then, MA(d, t)/ ∼= finite implies that 
MAF(d, t)/ ∼= is finite, and similarly for the sincere case.

Given M ∈ MA(d, t), from (4.6) and (5.2), we know that in the decomposition MF ∼=
M1 ⊕· · ·⊕Mu as a direct sum of indecomposable AF-modules, we have Mi ∈ MAF(d, t). 
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Moreover, if M is sincere and B is a basis for the L-vector space F, then ⊕BM ∼=
Fξ(MF) ∼= ⊕jFξ(Mj) and Fξ(Mj) is sincere for all j, thus Mj is sincere for all j. If 
MAF(d, t)/ ∼= is finite, there are only finitely many isomorphism classes of such modules 
Mi, then from (3.6), we know that there are only finitely many possible isoclasses of such 
modules M . Then, MAF(d, t)/ ∼= finite implies that MA(d, t)/ ∼= is finite, and similarly 
for the sincere case.

(2) Given G ∈ HA(d, t), from (4.6) and (5.2), we have a decomposition GF ∼= G1 ⊕
· · · ⊕ Gu as a direct sum of pregeneric AF-modules G1, . . . , Gu ∈ HAF(d, t). As in the 
proof of (1), we can show that if G is sincere then each Gi is sincere.

Take G ∈ HAF(d, t). From (4.5), we get Fξ(G) ∼= G1 ⊕ · · · ⊕ Gt, for some pregeneric 
A-modules G1, . . . , Gt and G is a direct summand of GF

i , for some i ∈ [1, t]. Using (4.6), 
we have a direct sum decomposition GF

i
∼= G ⊕H2⊕· · ·⊕Hs, with Hi pregeneric. Moreover, 

G centrally finite implies that Gi is centrally finite with c- endol(Gi) = c- endol(G) ≤ d

and ||Gi||c = ||G||c ≤ t. Thus, Gi ∈ HA(d, t). Finally, notice that if G is sincere, so is 
GF

i , and so is Gi.
(3) This clearly follows from 1 and 2. �

Remark 5.7. If A is an L-constructible seminested ditalgebra and d ∈ N, the same 
number t chosen in (5.5) satisfies MAF(d) = MAF(d, t), M0

AF(d) = M0
AF(d, t), HAF(d) =

HAF(d, t), and H0
AF(d) = H0

AF(d, t), for any finite field extension F of L.

Theorem 5.8. Let A be an L-constructible seminested ditalgebra over a perfect field k. 
Suppose that A is not almost sharply wild or not almost endosharply wild. Then, for 
any non-negative integer d and t ≥ 0, there is a finite field extension Fω of L such that: 
for any finite field extension F of Fω, there are minimal F-ditalgebras B1, . . . , Bp, and 
functors F1, . . . , Fp such that:

1. Each functor Fi : Bi-Mod−−→AF-Mod is full and faithful and preserves endofinite 
modules;

2. For almost every M ∈ M0
AF(d, t) there are i ∈ [1, p] and N ∈ Bi-Mod with Fi(N) ∼=

M in AF-Mod;
3. For every G ∈ H0

AF(d, t) there are i ∈ [1, p] and a principal generic Bi-module Qj, 
with Fi(Qj) ∼= G in AF-Mod, see [5, 31.3];

4. The functors Fi are compositions of basic reduction functors: thus each Bi is ob-
tained from AF by a finite sequence of basic operations of the form C 
→ Cz, 
where z ∈ {a, r, d, e, u}, or there is an isomorphism of layered ditalgebras ξ :
C−−→Cz, and Fi is a composition of the corresponding basic reduction functors 
F z : Cz-Mod−−→C-Mod, or F z = Fξ : Cz-Mod−−→C-Mod given by restriction 
through the isomorphism ξ.
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Proof. This proof is an adaptation of the proof of Drozd’s Tame and Wild Theorem, 
more precisely of [4, 7.5] and [5, 26.9]. We give a full proof for the not almost sharply 
wild case, the not almost endosharply wild case is similar.

Suppose that A is an L-constructible seminested ditalgebra not almost sharply 
wild. Then, for each finite field extension F of L, from (3.4), we know that AF is an 
F-constructible seminested ditalgebra not almost sharply wild. The same will remain 
true for any ditalgebra obtained from AF by a finite number of basic operations of type 
AF 
→ AFz with z ∈ {a, r, d, e, u}, see (3.11).

We shall proceed by induction on t, for every d ∈ N.
If A is sincerely (d, 0)-trivial, by (5.6), so is AF for any finite field extension F of L, 

and we have nothing to show (the empty family of functors works for any AF). So assume 
that t > 0 and that, for any t′ < t, any d′ ∈ N, and any L′-constructible seminested 
ditalgebra A′, which is not almost sharply wild, there is a finite field extension F′

ω of L′

and, for each finite field extension F of F′
ω, there are functors Fi : Bi- Mod−−→A′F-Mod, 

with Bi a minimal F-ditalgebra, satisfying 1–4, for A′, d′ and t′. In particular, for almost 
every M ∈ M0

A′F(d′, t′) there are i and N ∈ Bi-mod such that Fi(N) ∼= M in A′F-Mod, 
and for each G ∈ H0

A′F(d′, t′) there are a unique i and a principal generic Bi-module Qj

with Fi(Qj) ∼= G.
Now, fix any d ∈ N and assume that the L-constructible seminested ditalgebra A is 

not sincerely (d, t)-trivial. Otherwise, from (5.6), there is nothing to show: the empty 
family of functors works for any AF, and any finite field extension F of L.

Since A is a seminested ditalgebra, we can choose a minimal solid arrow α : i0−−→j0
in B0, that is a solid arrow α with minimal height. Then, by triangularity, we have that 
δ(α) ∈ W1, where (R, W ) denotes the seminested layer of A, see [5, 23.5 and 14.1].

• Case 1: δ(α) = 0 and i0 = j0.

Since A is not almost sharply wild, by (3.14), Rei0
∼= L. Consider the ditalgebra 

Aa obtained from A by absorption of the loop α. By [5, 20.6], we can identify AaF

with AFa, for each finite field extension F of L, and we have the associated functor 
F̂ a : AFa- Mod−−→AF- Mod. Then, we can apply (5.3)(2) to every M ∈ M0

AF(d, t) (resp. 
M ∈ H0

AF(d, t)) to obtain N ∈ M0
AFa(d, t) (resp. N ∈ H0

AFa(d, t)) with F̂ a(N) ∼= M . We 
have that Aa has one solid arrow less than A. Repeating this argument, if necessary, 
either we end up with a seminested ditalgebra with no solid arrows (that is a minimal 
ditalgebra) or at some step we obtain a ditalgebra with a minimal solid arrow α in one 
of the following cases.

• Case 2: δ(α) = 0 and i0 �= j0.

Since A is not almost sharply wild, by (3.14), Rei0
∼= L and Rej0

∼= L. Then, we can 
consider the ditalgebra Ae obtained from A by reduction of the edge α and the equiva-
lence functor F e : Ae-Mod−−→A-Mod. Then, from (5.3)(5) and (2.9), for every module 
M ∈ M0

A(d, t) (resp. M ∈ H0
A(d, t)) we obtain a module N ∈ M0

Ae(d, t− 1) (resp. 
N ∈ H0

Ae(d, t − 1)), with F e(N) ∼= M . By assumption A is not sincerely (d, t)-trivial, 
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hence Ae is not sincerely (d, t − 1)-trivial. Applying our induction hypothesis to Ae, 
d, and t − 1, we get a finite field extension Fω of L such that for any finite field ex-
tension F of Fω, we have functors Fi : Bi-Mod−−→AeF- Mod, i ∈ [1, m], satisfying 
the corresponding statements 1–4. Recall from [5, 20.11] that the seminested ditalge-
bras AeF and AFe can be identified, and we have an edge reduction equivalence functor 
F̂ e : AeF- Mod = AFe-Mod−−→AF- Mod. As before, for every module M ∈ M0

AF(d, t)
(resp. M ∈ H0

AF(d, t)) we obtain a module N ∈ M0
AFe(d, t −1) (resp. N ∈ H0

AFe(d, t −1)), 
with F̂ e(N) ∼= M . Then, FF := {F̂ eFi | i ∈ [1, m]} is the required family of functors for 
AF, d, and t.

• Case 3: δ(α) �= 0.

Write C := Rei0 ⊗L Rej0 . Then, ej0W1ei0 is a C-module and we can write δ(α) =∑j
i=1 civi, for some v1, . . . , vj ∈ ej0B1ei0 and 0 �= ci ∈ C.

• Subcase 3.1: Some ct is invertible in C.

This is the case, for instance, if Rei0
∼= L and Rej0

∼= L. Make v′t :=
∑j

i=1 civi and 
consider the change of basis for W1 where v1, . . . , vt, . . . , vj is replaced by v1, . . . , v′t, . . . , vj
using [5, 26.1] (more precisely, consider the matrix Q with Qti = ci for i ∈ [1, j]; Qii = 1
for i �= t; and Qiq = 0 for t �= i �= q; where Q is invertible because ct is so).

Then, we can apply regularization to A and obtain an associated equivalence functor 
F r : Ar- Mod−−→A-Mod. Then, we proceed as in Case 2. Namely, from (5.3)(4) and 
(2.8), for every module M ∈ M0

A(d, t) (resp. M ∈ H0
A(d, t)) we obtain a module N ∈

M0
Ar (d, t − 1) (resp. N ∈ H0

Ar (d, t − 1)), with F r(N) ∼= M . By assumption A is not 
sincerely (d, t)-trivial, hence Ar is not sincerely (d, t − 1)-trivial. Applying our induction 
hypothesis to Ar, d, and t − 1, we get a finite field extension Fω of L such that for 
any finite field extension F of Fω, we have the corresponding family of functors Fi :
Bi- Mod−−→ArF- Mod, i ∈ [1, m]. Recall from [5, 20.5] that the seminested ditalgebras 
ArF and AFr can be identified, and we have a regularization equivalence functor F̂ r :
ArF-Mod = AFr- Mod−−→AF- Mod. Again, for every module M ∈ M0

AF(d, t) (resp. 
M ∈ H0

AF(d, t)) we obtain a module N ∈ M0
AFr (d, t − 1) (resp. N ∈ H0

AFr(d, t − 1)), with 
F̂ r(N) ∼= M . Then, FF := {F̂ rFi | i ∈ [1, m]} is the required family of functors for AF, 
d, and t.

• Subcase 3.2: Rej0
∼= L.

Since we have already considered the Subcase 3.1, we may assume that Rei0 �∼= L. 
Thus, Rei0 = L[x]f(x) and C ∼= L[x]f(x). By an appropriate change of basis of W1 of 
the form v′i = f(x)−pvi, for all i, using again [5, 26.1], we may assume that ci ∈ L[x]. 
Performing a finite field extension of L if necessary, we can assume that the polynomial 
c1(x) splits in L[x] as a product of linear factors. Consider the ditalgebra Au obtained 
from A by unravelling at i0 using d and the different roots of c1(x), see [5, 23.23].

From (5.3)(6) and (2.10), for every module M ∈ M0
A(d, t) (resp. M ∈ H0

A(d, t)) with 
M(c1(x)) not invertible, there is a module N ∈ M0

Au(d, t −1) (resp. N ∈ H0
Au(d, t −1)), 
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with Fu(N) ∼= M . Applying our induction hypothesis to Au we get a finite field extension 
Fω of L such that for any finite field extension F of Fω, we have the corresponding 
family of functors Fi : Bi-Mod−−→AuF-Mod, i ∈ [1, m]. Recall from [5, 20.11] that 
the seminested ditalgebras AuF and AFu can be identified, and we have an associated 
unravelling functor F̂u : AuF- Mod = AFu-Mod−−→AF- Mod.

Then, {F̂uFi | i ∈ [1, m]} is a family of functors as in 1 and 4, for AF, d, and t, which 
covers only AF-modules M as in 2 or 3 with M(c1(x)) not invertible.

So, consider also the ditalgebra Al obtained from A by localizing at the vertex i0
using the polynomial c1(x), see [5, 26.4]. Then for every module M ∈ M0

A(d, t) (resp. 
M ∈ H0

A(d, t)) with M(c1(x)) invertible, we obtain a module N ∈ M0
Al(d, t) (resp. 

N ∈ H0
Al(d, t)), with F l(N) ∼= M , see [5, 26.6]. From [5, 26.7], we know that Al can be 

identified with some Aud and F l with FuF d.
According to the description of the differential δl of Al given in [5, 26.4 and 17.7], we 

have that δl(1 ⊗ α ⊗ 1) =
∑j

i=1 ci(x)(1 ⊗ vi ⊗ 1). But now, c1 is invertible and we can 
proceed as in Subcase 3.1 to produce a finite field extension F′

ω of L such that for any 
field extension F of F′

ω there is a family F ′
j : B′

j- Mod−−→AlF- Mod, j ∈ [1, m′], which 
satisfies 1-4 for AlF, d, and t.

Now, consider a finite field extension F′′
ω of L containing Fω and F′

ω, and a finite field 
extension F of F′′

ω.
From our preceding remark on Al, [5, 30.4 and 20.11], we can identify AlF with AFl, 

and we have an associated functor F̂ l : AlF-Mod = AFl- Mod−−→AF- Mod such that for 
any M ∈ M0

AF(d, t) (resp. M ∈ H0
AF(d, t)) with M(c1(x)) invertible, we obtain a module 

N ∈ M0
AFl(d, t) (resp. N ∈ H0

AFl(d, t)), with F̂ l(N) ∼= M .
Then, FF := {F̂uFi | i ∈ [1, m]} 

⋃
{F̂ lF ′

j | j ∈ [1, m′]} is a family of functors as in 1
and 4, for AF, d, and t, which covers the required AF-modules in 2-3.

• Subcase 3.3: Rei0
∼= L.

This case is dual to Subcase 3.2.

• Subcase 3.4: Rei0 �∼= L and Rej0 �∼= L.

Assume that Rei0 = L[x]f(x) and Rej0 = L[y]g(y). Hence, C = L[x, y]f(x)g(y). After 
an appropriate change of basis of W1, of the form v′i = f(x)−pg(y)−qvi, using [5, 26.1], 
we may assume that all the ci are polynomials in L[x, y]. Let h(x, y) be the highest 
common factor of the ci(x, y) and assume that h(x, y)qi(x, y) = ci(x, y), for all i. Since 
the qi(x, y) are coprime in L(x)[y], there are polynomials si(x, y) ∈ L[x, y] and a non-zero 
polynomial c(x) ∈ L[x] such that

c(x) =
j∑

i=1
si(x, y)qi(x, y).

Again, performing a finite field extension of L if necessary, we can assume that c(x)
splits in L[x] as a product of linear factors. Then, we can proceed as in Subcase 3.2, 
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by unravelling at i0 using d and the different roots of c(x). Moreover, we can consider 
the ditalgebra Al obtained from A by localizing at the point i0 using c(x). We have 
the associated functors F̂u : AFu-Mod−−→AF- Mod and F̂ l : AFl- Mod−−→AF- Mod, as 
before.

Then, any M ∈ M0
AF(d, t) (resp. M ∈ H0

AF(d, t)) with M(c(x)) non-invertible, can be 
covered as in Subcase 3.2, for any finite field extension F of a suitable finite field extension 
Fω of L. If M(c(x)) is invertible, we have that M ∼= F̂ l(N) where N ∈ AFl- Mod is sincere 
and has the same central endonorm than M . From the preceding formula for c(x), we 
obtain in the ditalgebra Al that 1 =

∑j
i=1[si(x, y)c(x)−1]qi(x, y). The terms in this 

formula all belong to the algebra H := L[x, y]c(x). Here, H ∼= D[y], where D = L[x]c(x)
is a principal ideal domain. From [5, 26.2], we obtain an invertible matrix Q ∈ Mj×j(H)
with first row (q1, . . . , qj). Consider the change of basis for W l

1 = S ⊗R W1 ⊗R S, which 
replaces each wi := 1 ⊗ vi ⊗ 1 by w′

i defined by the formula

(w′
1, . . . , w

′
j)t = Q(w1, . . . , wj)t.

Hence,

δl(1 ⊗ α⊗ 1) =
∑
i

ciwi =
∑
i

hqiwi = hw′
1.

Since Al is not almost sharply wild, by (3.14), we can assume, after performing a finite 
field extension if necessary, that h is invertible. Now, we can replace the basis w′

1, w
′
2, . . .

of W l
1 by hw′

1, w
′
2, . . . and apply regularization, as in Subcase 3.1, to finish the proof. �

Corollary 5.9. Let A be an L-constructible seminested ditalgebra over a perfect field k. 
Suppose that A is not almost sharply wild or not almost endosharply wild. Then, for any 
non-negative integer d and t ≥ 0, there is a finite field extension Fω of L such that: for 
any finite field extension F of Fω, there are rational F-algebras Γ1, . . . , Γq, and functors 
F1, . . . , Fq such that:

1. Each functor Fi : Γi-Mod−−→AF-Mod is sharp and endosharp, and Fi(F(x)) is an 
algebraically rigid centrally finite pregeneric AF-module;

2. For almost every M ∈ M0
AF(d, t) there are i ∈ [1, q] and N ∈ Γi-Mod with Fi(N) ∼=

M in AF-Mod;
3. For every G ∈ H0

AF(d, t) there is a unique i ∈ [1, q] with Fi(F(x)) ∼= G in AF-Mod;
4. For each i ∈ [1, q] there is an AF-Γi-bimodule Yi, which is free of finite rank as a 

right Γi-module, such that Fi
∼= LAF(Yi ⊗Γi

−), where LAF : AF-Mod−−→AF-Mod
is the canonical embedding.

Proof. Apply the last theorem to A, d and t, to obtain the field Fω, then fix some finite 
field extension F of Fω to get minimal F-ditalgebras B1, . . . , Bp and functors F1, . . . , Fp

as before. Since each Bi is a minimal F-ditalgebra, we know that Bi
∼= Γi,1 × · · · ×
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Γi,si × F × · · · × F, where Γi,j is a rational F-algebra for all j ∈ [1, si]. Consider the 
canonical injections Θi,j : Γi,j- Mod−−→Bi-Mod and the canonical embedding functor 
LBi

: Bi- Mod−−→Bi- Mod. Then, we have a natural isomorphism Θi,j
∼= Γi,j ⊗Γi,j

−, 
where Γi,j has the natural Bi-Γi,j-bimodule structure. Since Bi is minimal, it is also clear 
that LBi

coincides with the extension functor Ei : Bi- Mod−−→Bi- Mod corresponding 
to the proper subalgebra Bi of Bi. Then, from (3.10), we know that LBi

is a sharp and 
endosharp functor. It is clear that Θi,j is also a sharp and endosharp functor. From 
(5.8)(1) and (3.8)(2), Fi is sharp and endosharp. From [5, 22.7] and (3.8)(1), we get a 
sharp and endosharp functor Fi,j := FiEiΘi,j

∼= FiLBi
(Γi,j ⊗Γi,j

−) ∼= LAF(Yi,j ⊗Γi,j
−), 

where Yi,j is the AF-Γi,j-bimodule Fi(Γi,j), which is free of finite rank by the right.
It is clear that Θi,j preserves algebraically rigid centrally finite pregeneric modules, 

and so does Ei by (2.6). The functor Fi preserves algebraically rigid centrally finite 
pregeneric modules by (2.8) and (2.10). Then, Fi,j also has these properties.

Finally, notice that almost every finite-dimensional indecomposable module M of 
Bi- Mod is of the form EiΘi,j(M ′), for some j and some M ′ ∈ Γi,j- Mod, and every 
principal pregeneric Bi-module Q is of the form EiΘi,j(F(x)), for a unique j. Then, the 
family of rational F-algebras {Γi,j}i,j and the family of functors {Fi,j}i,j work. �

In the following result we remove the sincerity and the endonorm from the statement 
of the last corollary.

Theorem 5.10. Let A be an L-constructible seminested ditalgebra over a perfect field k. 
Assume that A is not almost sharply wild or not almost endosharply wild. Let d be 
a non-negative integer. Then, there is a finite field extension Fω of L such that: for 
any finite field extension F of Fω, there are rational F-algebras Γ1, . . . , Γm and functors 
F1, . . . , Fm such that:

1. Each functor Fi : Γi-Mod−−→AF-Mod is sharp and endosharp, and Fi(F(x)) is an 
algebraically rigid centrally finite pregeneric AF-module;

2. For almost every M ∈ MAF(d) there are i ∈ [1, m] and N ∈ Γi-Mod with Fi(N) ∼=
M in AF-Mod;

3. For every G ∈ HAF(d) there is a unique i ∈ [1, m] with Fi(F(x)) ∼= G in AF-Mod;
4. For each i ∈ [1, m] there is an AF-Γi-bimodule Yi, which is free of finite rank as a 

right Γi-module, such that Fi
∼= LAF(Yi ⊗Γi

−), where LAF : AF-Mod−−→AF-Mod
is the canonical embedding.

Proof. This is a standard procedure and similar to the proof of [4, 8.1]. Anyway, we recall 
the argument. First notice that we have a corollary of (5.9) by eliminating the numbers 
t in the hypothesis of (5.9) and replacing M0

AF(d, t) (resp. H0
AF(d, t)) by M0

AF(d) (resp. 
by H0

AF(d)) in its conclusions. The proof of this corollary, which we will refer to as 
Corollary (5.9)’, is trivial if we keep in mind (5.5) and (5.7).
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Now take an L-constructible seminested ditalgebra A and assume that it is not almost 
sharply wild. The not almost endosharply wild case is treated in a similar way.

Given d ∈ N, we shall say that a seminested ditalgebra A is d-trivial (resp. sincerely 
d-trivial) iff there is only a finite number of isoclasses of modules in MA(d) (resp. in 
M0

A(d)), and HA(d) (resp. H0
A(d)) is empty.

We assume that A is not d-trivial, otherwise, from (5.6), there is nothing to prove 
(the empty family of functors works for any AF, and any finite field extension F of L).

Consider the L-constructible seminested ditalgebras Ad1 , . . . , Adt obtained from A
by deletion of a finite number of idempotents of R. They are not almost sharply wild. 
Then, for any field extension F of L, consider the F-constructible seminested ditalgebras 
AFd1 , . . . , AFdt obtained from AF by deletion of the corresponding finite number of idem-
potents of RF. They are not almost sharply wild. Recall from [5, 20.4], that each AFdi

can be identified canonically with AdiF. We consider also Ad0 := A, AFd0 := AF, and the 
identity functor F d0 : AFd0- Mod−−→AF- Mod. Consider the subset I of [0, t] defined by 
i ∈ I iff Adi is not sincerely d-trivial.

Then, apply (5.9)’ to each Adi and d, for i ∈ I, to obtain finite field extensions {Fi}i∈I

of L satisfying the corresponding conditions. Then, if Fω denotes a finite field extension 
of L containing all Fi, for i ∈ I, and F is any finite field extension of Fω, there are functors 
{Fi,j : Γi,j- Mod−−→AdiF- Mod}ni

j=1 satisfying the corresponding statements 1–4 of the 
Corollary (5.9)’ for each AdiF and d. Then, we can consider the family of compositions

FF :=
{
Γi,j- Mod Fi,j−−→AdiF-Mod = AFdi- Mod Fdi−−→AF- Mod | i ∈ I and j ∈ [1, ni]

}
.

It is clear that the family FF satisfies item 1, because the families {Fi,j}j do so and F di

is sharp and endosharp. The family FF also satisfies 2 because given any M ∈ MAF(d), 
we have M ∼= F di(N), for some N ∈ M0

AFdi
(d). For almost each one of these modules N , 

we have Fi,j(H) ∼= N , for some H ∈ Γi,j-mod. Similarly, FF satisfies 3. Item 4 follows 
from the application of [5, 22.7]. �
Corollary 5.11. Let A be an L-constructible seminested ditalgebra over a perfect field k. 
Then, A is centrally pregenerically tame iff A is not almost sharply wild iff A is not 
almost endosharply wild.

Proof. This follows from (4.9), (5.10), and (4.8). �
6. Tame and wild theorem

In the following paragraphs we establish the fundamental relation of the notion of 
centrally finite generic tameness with the notions of wildness introduced before: our 
Theorem (1.5). For technical reasons, we need to consider the following variation of the 
given notions of wildness.
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Definition 6.1. A layered ditalgebra A is called absolutely sharply wild (resp. absolutely 
endosharply wild) iff there is some A-k〈x, y〉-bimodule Z, free of finite rank by the right, 
such that the functor

F〈x, y〉-Mod
ZF⊗F〈x,y〉−−−−−−−−−−→AF- Mod

LAF−−−→AF- Mod

is sharp (resp. endosharp), for every finite field extension F of k. A layered ditalgebra 
A is called almost absolutely sharply wild (resp. almost absolutely endosharply wild) iff 
AF is absolutely sharply wild (resp. absolutely endosharply wild), for some finite field 
extension F of k.

Lemma 6.2. For any non-zero polynomial h ∈ k[x, y], the algebra k[x, y]h is almost ab-
solutely sharply wild and almost absolutely endosharply wild.

Proof. It is easy to show that there is a finite field extension F of k and a polynomial 
g ∈ F[x, y] with g(0, 0) �= 0 such that for any finite field extension E of F, we have 
E[x, y]h ∼= E[x, y]g.

In order to see that F[x, y]g is sharply and endosharply wild, we just have to notice 
that in the proof of [5, 22.16] the functor realizing the wildness of F[x, y]g determines in 
fact a sharp and endosharp functor, see [5, 31.4].

We can show that F[x, y]g is absolutely sharply wild (resp. absolutely endosharply 
wild) following the argument of the proof of [5, 30.7], where we have to notice that the 
bimodules which realize wildness for each scalar extension determine in fact sharp (resp. 
endosharp) functors. �
Theorem 6.3. Every critical ditalgebra is absolutely sharply wild and absolutely en-
dosharply wild.

Proof. This is done as in the first part of the proof of [5, 30.6], where the functors 
appearing there are sharp and endosharp. �
Proposition 6.4. Given any almost sharply wild (or almost endosharply wild) L-construct-
ible seminested ditalgebra A, over a perfect field, there is a finite field extension F of L, 
a critical F-ditalgebra C, and functor F : C-Mod−−→AF-Mod, which is a composition 
of basic reduction functors of type F z, with z ∈ {a, r, d, e, u}.

Proof. This follows from the argument in the proof of (5.8), where applying basic re-
duction operations to any L-constructible seminested ditalgebra A, modulo finite field 
extensions, we either end up with minimal ditalgebras or at some stage we find a critical 
situation which is preserved under finite field extensions, see also (3.14) and its proof. If, 
for a given d ∈ N, we end up with minimal ditalgebras over a finite field extension F of 
L, this means that AF has finitely many non-isomorphic centrally finite endofinite inde-
composables with central endolength bounded by d. From (4.8), the same holds for A. 
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Thus, A is centrally pregenerically tame, and it is not almost sharply wild (and it is not 
almost endosharply wild). Thus, for an almost sharply wild (or an almost endosharply 
wild) ditalgebra A we must encounter the critical situation mentioned before. �
Corollary 6.5. Any almost sharply wild (resp. almost endosharply wild) L-constructible 
seminested ditalgebra A over a perfect field is almost absolutely sharply wild (resp. almost 
absolutely endosharply wild).

Proof. From (6.4), there is a finite field extension F of L, a critical F-ditalgebra C, and 
a functor F : C-Mod−−→AF- Mod, which is a composition of basic reduction functors of 
type F z, with z ∈ {a, r, d, e, u}. From [5, §20], if Bz is the seminested ditalgebra obtained 
from a seminested F-ditalgebra B by a basic operation of type z ∈ {a, r, d, e, u}, and E is 
any finite field extension of F, we can identify BzE with BEz and the following diagram 
commutes up to isomorphism

BEz- Mod F zE

−−→ BE- Mod

(−)E


⏐⏐⏐⏐

⏐⏐⏐⏐ (−)E

Bz- Mod F z

−−→ B-Mod,

where F zE ∼= FEz is the functor associated to the basic operation BE 
→ BEz. So we 
denote by FE the composition of the functors F zE corresponding to the functors F z

appearing in the composition F . Then, we also get a functor FE : CE- Mod−−→AE- Mod, 
where CE is a critical E-ditalgebra. Thus, the functor FE is full and faithful and preserves 
endofinite modules, and hence it is a sharp and endosharp functor.

By (6.3), applied to the critical ditalgebra C, there is a CF-F〈x, y〉-bimodule Z, free 
of finite rank by the right, such that for each finite field extension E of F, the following 
functor is sharp (resp. endosharp):

E〈x, y〉- Mod
ZE⊗E〈x,y〉−−−−−−−−−−→CE- Mod

LCE−−→CE- Mod .

From [5, 22.7], the following functor is also sharp (resp. endosharp)

E〈x, y〉- Mod
F E(ZE)⊗E〈x,y〉−−−−−−−−−−−−−→AE- Mod

LAE−−−→AE- Mod,

and the bimodule FE(ZE) is finitely generated projective by the right (hence free of finite 
rank). The commutativities of the above diagrams give FE(ZE) ∼= F (Z)E, so we get 
that the AF-F〈x, y〉-bimodule F (Z) realizes the absolute sharp wildness (resp. absolute 
endosharp wildness) of AF. �
Lemma 6.6. Consider a finite-dimensional algebra Λ, over a perfect field k, and its 
Drozd’s ditalgebra D = DΛ. If D is sharply (resp. endosharply) wild, then the following 
composition functor is sharp (resp. endosharp)
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k〈x, y〉-Mod
Z⊗k〈x,y〉−−−−−−−−−→D-Mod LD−−→D-Mod ΞΛ−−→P1(Λ) Cok−−→Λ-Mod .

Here, the bimodule Z realizes the sharp (resp. endosharp) wildness of D and is given by 
our assumption, ΞΛ denotes the usual equivalence, and Cok is the cokernel functor.

Proof. Since k〈x, y〉 admits an infinite number of non-isomorphic finite-dimensional 
(hence endofinite) indecomposables, then we can use the same argument of the proof 
of [5, 22.20(1)] and [2, 4.4], to guarantee that the composition preserves indecompos-
ables (resp. endofinite indecomposables). Using [5, 18.10] and the fact that the functor 
LD(Z⊗k〈x,y〉−) is sharp (resp. endosharp), we obtain that the above composition functor 
is sharp (resp. endosharp). �
Lemma 6.7. Consider a finite-dimensional algebra Λ over a perfect field k, and suppose 
that its Drozd’s ditalgebra DΛ is semielementary, as in (3.1). Then,

1. DΛb is centrally pregenerically tame iff DΛ is so;
2. DΛb is almost sharply wild (resp. almost endosharply wild) iff DΛ is so;
3. DΛb is almost absolutely sharply wild (resp. almost absolutely endosharply wild) iff 

DΛ is so.

Proof. Consider the basification equivalence functor F b : DΛb- Mod−−→DΛ-Mod, as in 
[2, 3.3]. Then F b is a sharp and endosharp functor, and (1) follows from [2, 3.3]. We 
denote by F̂ b : DΛFb- Mod−−→DΛF- Mod the basification equivalence functor, for any 
finite field extension F of k. Recall that we can identify (DΛ)F with DΛF, and DΛFb with 
DΛbF.

(2) If DΛbF = DΛFb is sharply wild (resp. endosharply wild), for some finite field 
extension F of k, from [5, 22.7], we know that if DΛF is sharply wild (resp. endosharply 
wild).

Now, assume that DΛF is sharply wild (resp. endosharply wild), for some finite field 
extension F of k. Then, by (3.9), DΛF is not centrally pregenerically tame. By assumption, 
DΛ is semielementary. Hence, DΛF is semielementary. From item 1, we obtain that DΛFb

is not centrally pregenerically tame. By (5.11), the F-constructible seminested ditalgebra 
DΛFb = DΛbF is almost sharply wild (resp. almost endosharply wild). Then, DΛb is almost 
sharply wild (resp. almost endosharply wild).

(3) Assume that DΛb is almost absolutely sharply wild (resp. almost absolutely 
endosharply wild). Then, there is a finite field extension F of k, and some DΛbF-F〈x, y〉-bi-
module B, free of finite rank by the right, such that the functor

E〈x, y〉- Mod
BE⊗E〈x,y〉−−−−−−−−−−→DΛbE- Mod

LDΛbE−−−−→DΛbE- Mod

is sharp (resp. endosharp), for every finite field extension E of F. Then, by [5, 22.7], the 
composition functor
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F〈x, y〉-Mod
B⊗F〈x,y〉−−−−−−−−−→DΛbF- Mod

LDΛbF−−−−→DΛbF- Mod F b

−−→DΛF- Mod

is a sharp (resp. endosharp) and naturally isomorphic to LDΛF(F b(B) ⊗F〈x,y〉 −), where 
the DΛF-F〈x, y〉-bimodule F b(B) is free of finite rank by the right. We claim that 
LDΛE(F b(B)E ⊗E〈x,y〉 −) is sharp (resp. endosharp), for any finite field extension E of F. 
Indeed, the following composition is also sharp (resp. endosharp)

E〈x, y〉- Mod
BE⊗E〈x,y〉−−−−−−−−−−→DΛbE- Mod

LDΛbE−−−−→DΛbE-Mod F̂ b

−−→DΛE- Mod

and is naturally isomorphic to LDΛE(F̂ b(BE) ⊗E〈x,y〉−), where the DΛE-E〈x, y〉-bimodule 
F̂ b(BE) ∼= F b(B)E is free of finite rank by the right. Thus, DΛ is almost absolutely sharply 
wild (resp. almost absolutely endosharply wild).

If DΛ is almost absolutely sharply wild, it is almost sharply wild. Thus, item 2 implies 
that DΛb is almost sharply wild. Therefore, by (6.5), DΛb is almost absolutely sharply 
wild. The argument for almost absolute endosharp wildness is the same. �
Proposition 6.8. Let Λ be a finite-dimensional algebra over a perfect field k. Then, 
if its Drozd’s ditalgebra DΛ is almost absolutely sharply wild (resp. almost absolutely 
endosharply wild) then Λ is almost absolutely sharply wild (resp. almost absolutely en-
dosharply wild).

Proof. Assume that DΛ is almost absolutely sharply wild (resp. almost absolutely en-
dosharply wild). Then, there is a finite field extension F of k, and some DΛF-F〈x, y〉-bi-
module B, free of finite rank by the right, such that the functor

E〈x, y〉- Mod
BE⊗E〈x,y〉−−−−−−−−−−→DΛE- Mod

LDΛE−−−→DΛE- Mod

is sharp (resp. endosharp), for every finite field extension E of F. By (6.6) and [5, 22.18], 
the composition

F〈x, y〉-Mod
B⊗F〈x,y〉−−−−−−−−−→DΛF-Mod

LDΛF−−−→DΛF-Mod Ξ−−→P1(ΛF) Cok−−→ΛF-Mod

is a sharp (resp. endosharp) functor naturally isomorphic to Z ⊗F〈x,y〉 −, where the 
ΛF-F〈x, y〉-bimodule Z = Cok Ξ(B) is finitely generated (may be not free) by the right. 
We claim that ZE ⊗E〈x,y〉 − is sharp (resp. endosharp), for any finite field extension 
E of F. Indeed, by (6.6) and [5, 22.18], the following composition is also sharp (resp. 
endosharp)

E〈x, y〉- Mod
BE⊗E〈x,y〉−−−−−−−−−−→DΛE- Mod

LDΛE−−−→DΛE- Mod Ξ−−→P1(ΛE) Cok−−→ΛE- Mod

and is naturally isomorphic to ZE ⊗E〈x,y〉 −, where the ΛE-E〈x, y〉-bimodule ZE ∼=
Cok Ξ(BE) is finitely generated (may be not free) by the right (indeed, the functors 
Cok and Ξ commute with scalar extensions).
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Now, consider the functor F[x, y] ⊗F[x,y] − : F[x, y]-Mod−−→F〈x, y〉-Mod and the 
ΛF-F[x, y]-bimodule Z1 := Z ⊗F〈x,y〉 F[x, y]. Hence, for each finite field extension E of F, 
we have a sharp (resp. endosharp) functor ZE

1 ⊗E[x,y] − : E[x, y]- Mod−−→ΛE-Mod.
Now, consider a presentation of the F[x, y]-module Z1

F[x, y]s H−−→F[x, y]r−−→Z1−−→0.

Then, there are invertible matrices P and Q with entries in F[x, y]h, for some non-

zero polynomial h ∈ F[x, y], such that PHQ =
(
I 0
0 0

)
. This implies that the 

ΛF-F[x, y]h-bimodule Z2 := Z1 ⊗F[x,y] F[x, y]h is free of finite rank by the right, see 
the proof of [5, 22.17].

The same matrices P, H, Q have entries in E[x, y]h, for any finite field extension E of 
F, and we still have a presentation of the E[x, y]-module ZE

1

E[x, y]s H−−→E[x, y]r−−→ZE

1−−→0.

Again, this implies that the ΛE-E[x, y]h-bimodule ZE

2
∼= ZE

1 ⊗E[x,y]E[x, y]h is free of finite 
rank by the right.

Moreover, the functor ZE

2 ⊗E[x,y]h − : E[x, y]h- Mod−−→ΛE-Mod is sharp (resp. en-
dosharp).

Now, we know from (6.2) that F[x, y]h is almost absolutely sharply wild (resp. almost 
absolutely endosharply wild). Then, there is a finite field extension Fw of F such that 
Fw[x, y]h is absolutely sharply wild (resp. absolutely endosharply wild), say with the 
bimodule X, then we have that Z3 := ZFw

2 ⊗Fw[x,y]h X is a ΛFw -Fw〈x, y〉-bimodule, free 
of finite rank by the right, such that, for any finite field extension E of Fw, the functor 
ZE

3 ⊗E〈x,y〉 − : E〈x, y〉- Mod−−→ΛE- Mod is sharp (resp. endosharp). �
Lemma 6.9. Let L be a finite field extension of the perfect field k and Λ a finite-
dimensional k-algebra. Then, for any d ∈ N, there is only a finite number of isoclasses 
of centrally finite generic ΛL-modules H with c- endol(H) ≤ d iff there is only a finite 
number of isoclasses of centrally finite generic Λ-modules G with c- endol(G) ≤ d. Thus, 
ΛL is centrally generically tame iff Λ is centrally generically tame.

Proof. The same strategy of the proof given in [11, 2.19] works here. �
Theorem 6.10. Let Λ be a finite-dimensional algebra over a perfect field. Then the fol-
lowing statements are equivalent:

1. Λ is not centrally generically tame;
2. Λ is almost sharply wild;
3. Λ is almost absolutely sharply wild;
4. Λ is almost endosharply wild;
5. Λ is almost absolutely endosharply wild.
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Proof. Consider a finite field extension L of k such that ΛL admits a splitting ΛL =
S ⊕ rad ΛL, where the semisimple subalgebra S is a finite product of matrix algebras 
with coefficients in L, or, equivalently, such that DΛL is semielementary (and DΛLb is 
L-constructible).

Obviously, 3 implies 2 and 5 implies 4. By (3.9) and (6.9), we know that 2 implies 
1, and 4 implies 1.

In order to show that 1 implies 3 and 5, assume that Λ is not centrally generically 
tame. From (6.9), ΛL is not centrally generically tame. By (2.13), DΛL is not centrally 
pregenerically tame. Then, (6.7) implies that DΛLb is not centrally pregenerically tame, 
and (5.11) implies that DΛLb is almost sharply wild and almost endosharply wild. By 
(6.5), DΛLb is almost absolutely sharply wild and almost absolutely endosharply wild. 
Hence, (6.7) implies that this holds for DΛL. By (6.8), ΛL is almost absolutely sharply 
wild and almost absolutely endosharply wild. Hence, 3 and 5 hold for Λ. �
7. Parametrization theorem

In this last section we transfer the parametrization theorem (5.10), for modules over 
constructible seminested ditalgebras, to modules over finite-dimensional algebras over 
perfect fields. This will be used to derive our theorem (1.6).

Theorem 7.1. Let Λ be a centrally generically tame finite-dimensional algebra over a 
(possibly finite) perfect field k, and let d be a non-negative integer. Then, there is a finite 
field extension Fω of k such that: for any finite field extension F of Fω, there are rational 
F-algebras Γ1, . . . , Γm, and ΛF-Γi-bimodules Z1, . . . , Zm, which are finitely generated as 
right Γi-modules, satisfying the following:

1. The functor Zi ⊗Γi
− : Γi-Mod−−→ΛF-Mod is sharp and Zi ⊗Γi

F(x) is an alge-
braically rigid centrally finite generic ΛF-module, for i ∈ [1, m];

2. For almost every finite-dimensional indecomposable M ∈ ΛF-Mod with c- endol(M)
≤ d, there are i ∈ [1, m] and N ∈ Γi-Mod with Zi ⊗Γi

N ∼= M in ΛF-Mod;
3. For every centrally finite generic G ∈ ΛF-Mod with c- endol(G) ≤ d, there is a 

unique i ∈ [1, m] with Zi ⊗Γi
F(x) ∼= G in ΛF-Mod.

Proof. Let Λ be a centrally generically tame finite-dimensional algebra over a perfect 
field k and let d ∈ N. Since k is a perfect field, there is a finite field extension L of k
such that the Drozd’s ditalgebra DΛL of ΛL is semielementary. By (6.9), ΛL is centrally 
generically tame. Then, DΛLb is an L-constructible seminested ditalgebra not almost 
sharply wild, by (2.13) and (6.7). Moreover, for each finite field extension F of L, we can 
identify DΛF with DΛF, see [5, 20.13], and consider the basification equivalence functor 
F b : DΛFb- Mod−−→DΛF- Mod. From [4, 2.11 and 2.12], there is a positive integer μb, 
independent of the field F, such that c- endol(N) ≤ μb×c- endol(F b(N)), for any centrally 
finite N ∈ DΛFb- Mod.
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Make d′ := (1 + dimk Λ) × d and d′′ := μb × d′.
Apply (5.10) to the ditalgebra DΛLb and the integer d′′ to obtain a finite field extension 

Fω of L such that, for any finite field extension F of Fω, there is a family of functors 
Fi : Γi- Mod−−→DΛFb- Mod, i ∈ [1, m], such that 1–4 of (5.10) hold for DΛFb and d′′

(recall that we can identify DΛLbF with DΛFb, by [5, 20.11]).
For any i ∈ [1, m], we have Fi

∼= LDΛFb(Yi ⊗Γi
−), where Yi is a DΛFb-Γi-bimodule, 

free of finite rank as a right Γi-module and Fi is sharp, and preserves pregeneric 
modules. From [5, 22.7], we get that F bFi

∼= LDΛF(F b(Yi) ⊗Γi
−), where F b(Yi) is a 

DΛF-Γi-bimodule, free of finite rank as a right Γi-module and F bFi is sharp, and pre-
serves pregeneric modules.

Consider the usual equivalence functor ΞΛF : DΛF-Mod−−→P1(ΛF) and, for i ∈ [1, m], 
set Zi := Z ⊗DΛF F b(Yi), where Z is the transition bimodule associated to ΛF, as in [5, 
22.18]. Each bimodule Zi is finitely generated over Γi by construction. For each i, denote 
by Ui the composition

Γi-Mod F bFi−−→ DΛF- Mod ΞΛF−−→ P1(ΛF) Cok−−→ ΛF-Mod .

Then, Ui
∼= Cok ΞΛFLDΛF(F b(Yi) ⊗Γi

−) ∼= Z ⊗DΛF F b(Yi) ⊗Γi
− = Zi ⊗Γi

−.
The functor LDΛF(F b(Yi) ⊗Γi

−) preserves isomorphism classes of indecomposables. 
From [5, 22.20], we know that ΞΛFF bFi

∼= ΞΛFLDΛF(F b(Yi) ⊗Γi
−) is a sharp functor 

which maps indecomposable Γi-modules into P2(ΛF). By [5, 18.10], the functor Cok :
P2(ΛF)−−→ΛF-Mod is also sharp, and then the same holds for Ui. The last statement 
of 1 follows from property (5.10)(1) for Fi, [4, 2.11], and (2.12).

(2): Take a finite-dimensional indecomposable ΛF-module M satisfying that
c- endol(M) ≤ d and a module L ∈ DΛF- Mod with ΞΛF(L) ∈ P2(ΛF) and Cok ΞΛF(L) ∼=
M . Then, take L′ ∈ DΛFb- Mod with F b(L′) ∼= L. From (2.12), the finite-dimensional 
indecomposable DΛF-module L satisfies c- endol(L) ≤ d′, and L′ ∈ MDΛFb(d′′). From 
(5.10)(2), we know that for almost every such modules L′, we have that L′ ∼= Fi(N), 
for some i ∈ [1, m] and N ∈ Γi-mod. Hence, M ∼= Cok ΞΛF(L) ∼= Cok ΞΛFF bFi(N) ∼=
Zi ⊗Γi

N .
(3): Take a centrally finite generic ΛF-module G with c- endol(G) ≤ d and a 

module H ∈ DΛF-Mod with ΞΛF(H) ∈ P2(ΛF) and Cok ΞΛF(H) ∼= G. Then, take 
H ′ ∈ DΛFb- Mod with F b(H ′) ∼= H. From (2.12), H is a centrally finite pregeneric 
DΛF-module with c- endol(H) ≤ d′, and H ′ ∈ HDΛFb(d′′). From (5.10)(3), we have H ′ ∼=
Fi(F(x)) in DΛF- Mod, for i ∈ [1, m]. Thus, G ∼= Cok ΞΛF(H) ∼= Cok ΞΛFF bFi(F(x)) ∼=
Zi ⊗Γi

F(x). �
Lemma 7.2. Let Λ be a finite-dimensional algebra over a perfect field k, d ∈ N, and 
L a finite field extension of k. If every centrally finite generic ΛL-module H with 
c- endol(H) ≤ d is algebraically bounded, then every centrally finite generic Λ-module 
G with c- endol(G) ≤ d is algebraically bounded.
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Proof. Let G be a centrally finite generic Λ-module with c- endol(G) ≤ d. From [11, 2.14], 
we know that GL ∼= m1G1

⊕
· · ·

⊕
mtGt, where G1, . . . , Gt are generic ΛL-modules, and 

G is algebraically bounded iff Gj is algebraically bounded for some j ∈ [1, t]. But, from 
[11, 2.18], c- endol(G) = c- endol(Gi), for all i, and there is j ∈ [1, t] such that Gj is 
centrally finite. By assumption, Gj is algebraically bounded and we are done. �

The content and proof of our theorem (1.6) is divided into the following two theorems.

Theorem 7.3. Assume that Λ is a finite-dimensional algebra over a perfect field. If Λ is 
centrally generically tame and G is a generic Λ-module, then G is centrally finite iff G
is algebraically bounded.

Proof. Assume that Λ is centrally generically tame. Therefore, given d ∈ N, there is 
a finite field extension L of k such that the centrally finite generic ΛL-modules G with 
c- endol(G) ≤ d can be parametrized as described in (7.1). Then, any such centrally finite 
generic ΛL-module G is algebraically bounded, by item 1 of (7.1). By (7.2), any centrally 
finite generic Λ-module H with c- endol(H) ≤ d is algebraically bounded. Since this holds 
for each d ∈ N, any centrally finite generic Λ-module is algebraically bounded. Finally, 
it is clear that Λ is semigenerically tame and, from [11, 1.8], we know that algebraically 
bounded generic Λ-modules are centrally finite. �
Theorem 7.4. Let Λ be a finite-dimensional algebra over a perfect field k. Then, Λ is 
centrally generically tame iff Λ is semigenerically tame.

Proof. Clearly, every centrally generically tame finite-dimensional algebra is semigener-
ically tame.

Fix a finite-dimensional algebra Λ over a perfect field k. Let us show that Λ is centrally 
generically tame, whenever it is semigenerically tame. There is a finite field extension L
of k such that ΛL = S ⊕ J , where J is the Jacobson radical of ΛL and S is a semisimple 
subalgebra of ΛL of the form Mn1(L) ×· · ·×Mnt

(L), and hence DΛL is a semielementary 
L-ditalgebra. By [11, 2.19] and (6.9), it will be enough to show that ΛL is centrally 
generically tame, whenever it is semigenerically tame. So, we can assume that L = k.

Now assume that Λ is semigenerically tame, but not centrally generically tame. 
Then, by (2.13), DΛ is not centrally pregenerically tame. By (6.7), we know that the 
k-constructible seminested ditalgebra DΛb is not centrally pregenerically tame. Thus, 
by (5.11), DΛb is almost sharply wild. By (6.4), we have a finite field extension F of k, 
a critical F-ditalgebra C, and a functor

F : C- Mod−−→DΛbF- Mod,

which is a composition of functors of type F z, where z ∈ {a, r, d, e, u}. Denote by K
the algebraic closure of F. Thus, K is also the algebraic closure of k. We obtain directly 



R. Bautista et al. / Journal of Algebra 464 (2016) 1–35 35
from the definition [5, 24.5] that CK is a critical K-ditalgebra. From [5, 29.1], we have a 
functor

FK : CK-Mod−−→DΛbK-Mod,

where FK is isomorphic to a composition of functors of type F zK, with z ∈ {a, r, d, e, u}. 
This implies that DΛbK is wild but, by [5, 20.11], this last ditalgebra can be identified 
with DΛKb. So DΛK is wild, and so is ΛK. This contradicts [11, 1.8] �
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