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Resumen

La clasificación del tráfico de Internet consiste en etiquetar el tráfico en categorías predefinidas.

Uno de los intereses en la realización de esta tarea es priorizar cierto tipo de tráfico para ofrecer

Calidad de Servicio (QoS). Uno de los métodos más comunes encontrados en la literatura es el

aprendizaje automático, sin embargo, hay una falta de datos de tráfico de Internet etiquetados

públicamente actualizados. En la mayoría de los trabajos, los investigadores usan bases de datos

públicas que pueden estar desactualizadas o usan los flujos de tráfico de usuarios privados, el

problema con estos últimos es que se requiere el permiso de cada usuario para evitar la violación

de leyes de privacidad. Otro problema es que los datos capturados de usuarios privados carecen

de un proceso de etiquetado de tráfico correcto. Un método utilizado para etiquetar datos es el

análisis de carga útil que tiene como objetivo inspeccionar el contenido del tráfico; sin embargo,

si los datos están cifrados, dicho método no reconoce la categoría de tráfico de Internet. En

esta tesis, empleamos una arquitectura de nube para emular comportamientos similares a los

humanos y generar flujos de tráfico para etiquetarlos y almacenar su información estadística en

una base de datos. La información dentro de la base de datos se utilizó para entrenar diferentes

algoritmos para detectar comportamientos y filtrar ruido. Con el conjunto de datos reducido, se

determinó el clasificador de aprendizaje automático más adecuado, esta selección se sustenta en

varios experimentos.
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Abstract

Internet traffic classification is to label traffic into predefined categories. One of the interests

in performing this task is prioritizing some sensitive traffic in order to offer Quality of Service

(QoS). One of the most common methods found in the literature is Machine Learning, however,

there is a lack of public labeled Internet traffic data up to date. In most works, researchers either

use public databases which might be outdated or use the traffic flows from private users, the issue

with the latter is that the permission of every user is required to avoid violating privacy laws.

Even with their permission, the captured data would lack a correct traffic labeling process. A

method used to label data is payload analysis that aims at inspecting the traffic content; however,

if the data is encrypted, such method fails to recognize the Internet traffic category. In this thesis,

we employed a cloud architecture to emulate human-like behavior and generate traffic flows

to label them to store their statistical information in a database. The information within the

database was used to train different algorithms to detect behaviors and filter out the noise. With

the reduced dataset, we created the most suitable Machine Learning classifier, this selection is

sustained by several experiments.
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Chapter 1

Introduction

1.1 Preliminaries

According to the ITU (International Telecommunication Union), the Internet international band-

width increased up to 32% between 2015 and 2016 [5]. This constant increase generates a

greater demand for information and communication transport services. Such demands can be

approached by meeting the requirements of the network. According to [4], a network has three

different types of requirements: user’s, application’s, and device’s requirements. Table 1.1 de-

scribes those requirements.

Table 1.1: Network Requirements [4]

Type Requirement Definition

User

Timeliness User access, transfer, or modification of information

within a tolerable time frame. Tolerance is dependant

on the user’s perception of delay

Interactivity User access, transfer, or modification of information

within a tolerable time frame in terms of response time

Reliability Consistently available service from the user’s perspec-

tive

Presentation Quality Quality of the presentation to the user
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Adaptability Adaptation to users’ changing needs

Security Confidentiality, integrity, and authenticity of a user’s

information and physical resources

Affordability Purchases must fit within a budget

Functionality Any functional requirement that the user has for the

system

Supportability Set of characteristics that describe how well the cus-

tomer can keep the network operating at designed per-

formance, through the full range of mission scenar-

ios described by the customer during the requirements

analysis process.

Future Growth Determining if and when users are planning to deploy

and use new applications and devices on the network.

Application

Types

Mission-critical Predictable, guaranteed, and/or high-performance

RMA requirements.

Rate-critical Predictable, guaranteed, and/or high-performance ca-

pacity requirements

Real-time and interactive Predictable, guaranteed, and/or high- performance de-

lay requirements

Groups

Telemetry/Command-

and-Control Applica-

tions

Data and command information is transmitted between

remote devices and one or more control stations for

command, control, tracking, and determining status of

the remote devices

Visualization Applica-

tions

Applications that range from two-dimensional viewing

of objects to three-dimensional and virtual reality view-

ing, immersion, and manipulation of objects

Distributed-Computing

Applications

Applications that may range from having the comput-

ing devices sharing the same local bus, to being co-

located at the same LAN, to being distributed across

LAN, MAN, and WAN boundaries

Web Development, Ac-

cess, and Use Applica-

tions

Applications that are the current interactive equivalents

of the traditional remote device and information access

utilities telnet and FTP
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Bulk Data Transport Ap-

plications

Applications that can optimize the data transfer rate at

the expense of interactivity when the amounts of infor-

mation desired are relatively large and the sessions are

less interactive (or asynchronous)

Tele Service Applica-

tions

Applications that provide a subset of voice, video, and

data together to be delivered concurrently to groups of

people at various locations

Operations, Administra-

tion, Maintenance, and

Provisioning (OAM&P)

Applications

Applications that are required for the proper function-

ing and operation of the network

Client–Server Applica-

tions

Applications whose traffic flows behave in a

client–server fashion

Locations
Logical User, User Groups

Physical Servers, Floors within a building, Building

Device Types

Generic Computing De-

vices

End-to-end perspective

Servers Per-device basis perspective

Specialized devices Location dependent

In addition, the device requirements also consist of the performance characteristics (which

relate to the hardware, firmware, and software used in the devices) and the device locations.

Each of these requirements aims to a functional networking system, and as the network grows,

so does its performance requirements.

As defined in [4], performance can be defined as the set of levels for capacity, delay, and

RMA in a network. This definition reflects the network requirements described in Table 1.1 il-

lustrating that there is a link between the requirements of a network and its performance. There-

fore, focusing on the performance of a network reduces error frequency and impact.

[4] also establishes that an aspect to consider for performance is the capacity, delay, and

RMA levels through their respective traffic flows. The management of traffic flows is deter-

mined through their classification in terms of previously determined rules, such as SLAs or

QoS. Through these rules, it can be determined whether to deny or grant access to an identified
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traffic flow, this process is known as admission control. Similarly, traffic management rules can

use the process of traffic conditioning to identify the traffic flow type and mark its packets with

a label in order to assign them a priority. Both traffic conditioning and admission control are

only achievable by classification of traffic flows.

In terms of Internet services, traffic conditioning and admission control can be implemented

to provide better services to the users. To do so, it is required a set of rules to adhere to, and

since the experience of the user is related to the metrics of Quality of Service [6], then it can be

said that meeting such metrics concludes in a better experience for the user.

Furthermore, traffic flow classification is comprised of several methods, and given the rapid

growth of the Internet, the accuracy of some of the classifiers is reduced while other classifiers

become more computationally expensive. An increasingly-in-popularity method that does not

meet such problems is traffic classification through Machine Learning. The key issue of this

classification method is that there is a lack of labeled data to train the models. In this research,

we aim to solve this by developing and implementing a platform that generates the required

traffic flow data.

1.2 Context

In the literature [7–9], Internet traffic classification is commonly categorized into one of five

types: by port matching, by Deep Packet Inspection, statistical classification, behavioral tech-

niques, and Machine Learning.

Machine Learning (ML) classification has shown to be viable both in computing cost and

accuracy [10–12], and is comparable to the results obtained by the most precise classifiers [11].

In addition, ML classification does not require to analyze the payload of the packages [12], and

in some cases, it only requires statistical information about the flow [7]. By avoiding a payload

inspection, it can be said that Machine Learning classification respects privacy laws [13].

ML algorithms (MLAs) are trained with a dataset. In broad terms, if the dataset correlates
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its data tuplets with a class (label), each tuplet with its respective class can be used as input so

that the resulting algorithm assigns a label to new input; this is known as supervised learning.

On the other hand, unsupervised learning does not associate the data tuplets to a class, rather it

finds similarities among the training data and sorts it into nameless groups (clusters).

The key problem facing traffic classification by Machine Learning is the lack of ground

truth [8]. Ground truth is a dataset where a relationship between independent attributes and

a dependent attribute exists [14] [15]. While there are some public traces that can be used as

training dataset for the MLAs, there is no commonly agreed-upon dataset for most traffic-related

classification problems [16].

Most datasets used for Internet traffic classification research are generated by collecting

traffic traces at different levels of a test network, most commonly, this harvest is done at a

university router [12, 17–22]. The problem of a dataset acquired through this method is that it

will always lack the required labels for classification. This issue leads to the implementation of

either unsupervised classification or label generation for supervised classification.

Unsupervised MLAs can be used to group data in clusters, however, there still is a need for a

post-validation process to assign a label to each cluster. Alternatively, many researchers employ

payload inspection techniques to label traffic traces [11, 17–21, 23–25]. Unfortunately, it has

been demonstrated that payload inspection techniques as labeling methods add incertitude and

error to further analysis, in particular to ML [7]. In [7] is mentioned that the label assignment

process can be established by an emulation or generation system. Such a system could be used

to emulate human-like behavior and generate real traffic flows in a controlled manner so that

each time a traffic flow is generated, the system labels it accordingly.

In “Emulating Application and User Behavior on a Cloud Platform for Later Traffic Analy-

sis” [1], a cloud architecture is proposed composed by virtual machines that are able to perform

an internet activity that a human user might do (such as web browsing, online video streaming,

and so on) automatically. Each virtual machine connects to the Internet through a router. The

router is the only virtual machine that is connected to the cloud platform router.
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Before performing the activity, the virtual machines that perform the activity send a UDP

packet to the router informing which activity they are going to perform, this allows the router to

sniff the packets (inbound and outbound) and store them with the label it received. By having

a cloud architecture, the virtual machines, as well as the network, are elastic and may adapt

according to the requirements. Figure 1.1 illustrates the solution of Aguilar and Sadok [1]

Figure 1.1: Model of Aguilar and Sadok

In the present research, we furthered the study of the architecture of [1] to set a service-

oriented approach applied to the cloud platform using the ARCADIA method. In addition, we

developed a clustering method to filter out the noise from the emulated traffic flows and classi-

fying the most representative data. Finally, we tested several MLAs and compared their quality

metrics. This work was reproduced in an emulated satellite architecture for data collection [26].

1.3 Problem Statement

As presented in [8], one of the biggest obstacles in the study of traffic classification is the lack

of a dataset that properly represents common Internet activities. This poses an issue for any

ML solution where a dataset is required. To solve this, researches normally use traces from

universities, ISPs, or public traces, such as [27]. The main issue with these approaches is that

their data is not labeled. A common method to assign labels to traffic flows is through DPI
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analysis to, as employed in [28]. Machine Learning algorithms trained with DPI-obtained labels

could inherit the deficiencies of that sort of classification, especially the issues on correctly

labeling encrypted data.

In this research, we aim to solve the lack of labeled data issue by implementing a cloud

platform that enables the systematic creation of labeled datasets. We utilize a cloud platform

so that the virtual machines in the solution be always available. By constructing a platform

with virtual machines, specifically-task clients can be programmed, and their traffic flows can

be captured and labeled. Our proposal is the implementation of such architecture and a later

Machine Learning analysis.

In order to achieve the main research objective that is presented in the previous section, the

following central research question is defined: can a ML classifier perform Internet traffic clas-

sification with high accuracy if its ground truth was obtained through emulated traffic flows?. To

answer this question we must first decompose it into several questions to study the implications.

In turn, each question requires the answers of a sub-set of questions.

1. What is the background of the elements for the proposed solution?

(a) How can Machine Learning solve classification problems?

(b) Which MLAs exist for classification?

(c) What is Internet traffic classification?

(d) Why is Cloud Computing a viable solution for the lack of ground truth?

(e) What is the background of the current solutions?

(f) What MLAs are mostly used and how accurate are them?

(g) How was the ground truth obtained in other researches?

2. How can traffic flows be emulated?

(a) What is the workflow for a traffic emulation system?

(b) What does the system require?
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3. What is the proposed Machine Learning solution?

(a) How can noise be detected?

(b) Which algorithms are considered?

4. How is the implementation for this architecture?

(a) Which are the physical requirements for the implementation?

(b) How do the physical components interact with each other?

To answer these questions, we structured the thesis to provide the answers in each chapter.In

Chapter 2 the general background is studied. Section 2.2 provides the basic definitions of Ma-

chine Learning and types of classification, therefore, answering questions 1a and 1b. In Section

2.3 traffic classification is discussed and in that summary, the question 1c is answered. Section

2.3.2 reviews the state of the art of ML as traffic classifier so we answer questions 1e, 1f, and

1g.

Chapter 3 answers questions 2a and 2b. In Chapter 2.2 the noise filter is described, as well

as the offline training and the online metering, answering question 3a. Chapter 5 answers the

questions 4a, and 4b. In Chapter 6 the experiments and their results are shown. The results are

made to test the viability of the cloud platform, therefore we may answer question 1d, addition-

ally, the selected MLAs are deployed so a general assessment may be performed, this answers

question 3b.

1.4 Objectives

The aim of this research is to propose and implement a cloud architecture for traffic flow gen-

eration, labeling, and storage, with the purpose of a later classification testing different MLAs.

Mainly, the objective of the project is to generate labeled traffic data, separate the resulting data

into a training dataset and a testing dataset, train MLAs with the training dataset, identify rep-
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resentative data in the testing dataset, perform a sublabeling process, filter out the noise, and

identify an application type of each flow through a supervised Machine Learning classifier.

1.4.1 Main Objectives

There are three main aspects of this research, each one has a main objective:

• Formally model the solution. Employ a modeling methodology to identify the functional

and non-functional requirements of the solution in order to satisfy the needs of Internet

traffic classification.

• Cloud Architecture. To implement the cloud computing property of availability to con-

stantly generate and store data flows in a database using an autonomic framework.

• Machine Learning classification. To design, develop, and implement a filtering and sub-

labeling system that identifies key flows based on their statistical data for a later supervised

ML classification. Test and compare different MLAs’ metrics.

1.4.2 Specific Objectives

From the main objectives, we consider the specific requirements.

• Develop a platform that generates and monitors traffic flows. The platform must have

an architecture that uses the elements of the network to generate the flows required for

training.

• Emulate user and application behavior. Virtual machines from the cloud platform must

be configured so that they can emulate user activities (scenarios) to generate real traffic.

• Monitor all flows and all observable characteristics. The captured data is stored in a

database for constant monitoring and analysis.
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• Filter and Sublabel data. From the generated database, the characteristics of the flows

for MLA training are grouped by clusters in order to identify key behaviors. Based on

such behaviors, establish rules within the clusters so that noise is filtered out and flows

that belong to a well-defined cluster become sublabeled.

• Use supervised MLAs for traffic analysis. Unfiltered data which has not been sublabeled

is classified by different supervised MLAs to compare different metrics.

1.5 Methodology

Given the specific objectives, the following points are proposed.

• Develop a platform that generates and monitors traffic flows.

– Propose an architecture to emulate real network traffic scenarios.

• Emulate user and application behavior.

– Implement scenarios in a monitoring platform. Design scenarios comparable to those

of the users. When each scenario is implemented, its respective flow is observed in

the router of the network.

– Acquire and store the observable characteristics proposed in the experimental sce-

narios in a database. Based on the traffic files captured in the router a database is

managed to take into account the observable characteristics that can be used in the

Machine Learning algorithms.

• Monitor all flows and all observable characteristics.

– Manage and analyze the database. The information in the database must be consol-

idated to manage the data obtained from the different traffic flows to improve the

training of the Machine Learning algorithms.

• Use Machine Learning algorithms for flow traffic analysis.
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– Filter data. From the database, run a filter algorithm based on data clusterization to

discover noise in the data.

– Train and test Machine Learning models for traffic classification such as Decision

Trees, Random Forest, and SVM.

1.6 Contributions

The current research is relevant in two ways:

Practical Relevance. In this research, we addressed the issue of the lack of ground truth

for traffic classification MLAs. Specifically, we provided an architecture capable of generating

datasets with human-like behavior and used it to test different MLAs.

Scientific Relevance. We provided an implementation of the ARCADIA method for a cloud

architecture solution for a Machine Learning process.

1.7 Thesis structure and reading guide

The current thesis has been structured as follows. In Chapter 2, we review different types of

internet traffic classification, we give a brief summary of Machine Learning and its most used

methods for traffic classification, and we study the state of art of the current ML solutions for

traffic classification with emphasis on the method used to gather ground truth. In Chapter 3, we

present the system analysis requirements for the cloud architecture. In Chapter 4, we describe

the proposed algortihm to improve the accuracy of ML. In Chapter 5, we review the specific

structure of the cloud architecture. In Chapter 6, we describe the employed proposal and the data

we generated. Finally, in Chapter 7, we summarize the findings and propose future challenges.
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Chapter 2

Background

In this chapter, we contextualize the problem and the basis for our proposed solution. Firstly

we provide the background on cloud computing as a model which enables the development

of our labeled traces generation solution. Through the cloud platform, the output data will

then be studied by different MLAs. Finally, we review the state of the art of Internet traffic

classification solutions and compare the related works to ours in terms of employed MLA, data

preprocessing, labeling method, and source of dataset (i.e., public traces, university router, and

so on). Therefore, the remaining of the chapter is organized as follows: Section 2.1 provides

the core definitions of cloud computing and studies which requirements the proposed solution

needs to meet, Section 2.2 studies the background on Machine Learning solutions, focusing on

the means of acquiring a dataset for their training. Section 2.3 reviews the common methods of

traffic classification.

2.1 Cloud Computing

Cloud Computing is defined by the NIST referential architecture [29] as “a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable comput-

ing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly
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provisioned and released with minimal management effort or service provider interaction.”

According to [29], cloud computing can be divided into three levels of services, depending

on the required configuration and the consumer needs. The first level is Software as a Service

(SaaS) which includes the software applications and is targeted to end-users. This level only

provides access to the final software, consumers are not involved in the infrastructure or deploy-

ment. The second level, also known as the middleware level, is Platform as a Service (PaaS),

it provides software building blocks, such as libraries, databases, and Java virtual machines, for

software applications development. The third layer, also known as the OS level, is the Infras-

tructure as a Service (IaaS), it provides operating systems and drivers. An IaaS cloud allows one

or multiple guest OS to run virtualized on a single physical host.

In Cloud Computing context, there are two actors that can be used to describe the relation

between the different service models: the cloud provider and the cloud consumer. In [2], a

cloud provider is defined as a person, organization, or entity responsible for making a service

available to cloud consumers. A cloud provider builds the requested services, manages the

technical infrastructure, provisions the services at agreed-upon service levels, and protects the

security and privacy of the services.

In [2], a cloud consumer is the actor that represents a person or organization that maintains

a relationship with, and uses services from, a cloud provider. A cloud consumer browses the

service catalog from a cloud provider, requests the appropriate service, sets up service contracts

with the cloud provider, and uses the service.

The consumer activities and the provider activities depend on the type of service model that

is deployed. Table 2.1 represents the consumer and provider activities based on each service

model.

The cloud services levels transfer different amounts of responsibility between the customers

and the cloud provider. This shift in responsibility also means that the cloud provider undertakes

greater responsibility, ranging from physical and personnel security to the secure development

and maintenance of applications and the management of identities for access control. Figure 2.1
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Table 2.1: Cloud Consumer and Cloud Provider Activities
Service
Model

Consumer Activities Provider Activities

SaaS Uses application/service for
business process operations.

Installs, manages, maintains, and sup-
ports the software application on a cloud
infrastructure.

PaaS Develops, tests, deploys, and
manages applications hosted
in a cloud system.

Provisions and manages cloud infrastruc-
ture and middleware for the platform con-
sumers; provides development, deploy-
ment, and administration tools to plat-
form consumers.

IaaS Creates/installs, manages,
and monitors services for IT
infrastructure operations.

Provisions and manages the physical pro-
cessing, storage, networking, and the
hosting environment and cloud infrastruc-
ture for IaaS consumers.

From “NIST Cloud Computing Standards Roadmap” [2]

shows the shifts of responsibilities in the cloud services levels.

Figure 2.1: Cloud Service Levels [2]

In the recommendation“The NIST Definition of Cloud Computing” [29], the cloud infras-

tructure operation is divided into four different deployment models: public cloud, private cloud,

community cloud, or hybrid cloud. The differences are based on how exclusive the computing

resources are made to a Cloud Consumer.

In the public cloud deployment model, the service provider opens up the cloud infrastructure

to open use. The infrastructure is in the premises of the service provider, but is operated by

whoever uses it. Figure 2.2 illustrates the use of a public cloud in which a consumer, such as an

enterprise, make use of it, however other clients are able to use the same cloud.

Private cloud is solely owned by a particular institution, organization or enterprise. It gives

the exclusive access and usage of the infrastructure and computational resources to an organi-

14



Figure 2.2: Public Cloud [2]

zation. A private cloud can be hosted internally with on-site private clouds, or externally by

outsourced private clouds. Private clouds allow management of host applications and other ap-

plications used by their customers. Figure 2.3 illustrates an outsourced private cloud in which

consumers use a private cloud provided by a third party.

Figure 2.3: Private Cloud [2]

A community cloud is a multi-tenant platform which allows several companies work on the

same platform, given that they have similar needs and concerns. Similar to private clouds, a

community cloud may be managed by the organizations or by a third party, and may be imple-

mented on customer premise (i.e. on-site community cloud) or outsourced to a hosting company

(i.e. outsourced community cloud). Figure 2.4 illustrates an on premise community cloud in

which organizations sharing cloud resources.
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Figure 2.4: Community Cloud [2]

A hybrid cloud is a composition of two or more clouds (on-site private, on-site community,

off-site private, off-site community or public) that remain as distinct entities but are bound to-

gether by standardized or proprietary technology that enables data and application portability.

Using a hybrid cloud not only allows companies to scale computing resources, it also eliminates

the need to make massive capital expenditures to handle short-term spikes in demand as well as

when the business needs to free up local resources for more sensitive data or applications.

In the presented solution, the clients are the users of the platform. They provide the virtual

machine with a scenario, configure the connection to the Internet through a second virtual ma-

chine which will be an instance of a router template. To isolate the virtual machines depending

on the user who implemented it, the cloud architecture is defined then as a private deployment

model. In addition, the proposed cloud architecture is a PaaS solution, since it will focus on the

generation of labeled traffic flows. The generated labeled traffic flows will be then used for the

training of classification Machine Learning Algorithms.

2.2 Machine Learning

In this section, we will give a brief summary of the Machine Learning solutions for classification

problems. This summary is given as follows: Section 2.2.1 provides a general overview on

Machine Learning. In Section 2.2.2, the classification paradigm is summarized and some MLAs

for classification are shown in the context of their algorithms.
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2.2.1 Introduction to Machine Learning

Machine Learning is the field of study which allows computers to learn without being coded

explicitly [30], to achieve this, it is required a learning algorithm. [31] defined learning algorithm

as “A computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E”.

As explained in [32], learning is not the task itself rather the means of attaining the ability to

perform a task. The improvement over MLAs’ performance for task execution is given by the

experience. In Machine Learning context, experience denotes a dataset, where every instance is

represented with the same set of features [33]. If the dataset has a relation between independent

and dependent attributes, then we say that the dataset is labeled [14]. This type of dataset is

often referred to as ground truth [15]. Performance in classification MLAs can be defined by

their accuracy [32].

2.2.2 Classification by Machine Learning

Classification by Machine Learning is defined by [32] as the task of specifying which of k

categories some input belongs to, usually through the implementation of a function y = f (x) so

that f : Rn→{1, ...,k}. Classification problems may be approached by different types of MLAs.

Machine Learning may be categorized into supervised, unsupervised, reinforcement, and neural

networks [14].

Supervised MLAs require labeled data [33]. As explained in [7], “most of the supervised

learning algorithms adjust their model parameters minimizing the error between the model out-

put and the real expected output of an input. This means that historical data has to be labeled.”

In contrast, unsupervised MLAs do not require labeled data for they are used to find similar-

ities among data [7]. Unsupervised MLAs, also known as clustering, might be used to discover

new classes of items [33]. Clustering algorithms are commonly utilized to form subsets of data
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to find abnormalities and similarities in the data [7].

In this section, we will review some of the MLAs used in classification and illustrate their

usage by showing their algorithms. Having a grasp on the general implementation of such al-

gorithms will be beneficial for this study since different MLAs will be used to classify different

traffic flows. In this section, we will study three kinds of MLAs: supervised, unsupervised, and

neural networks. We will not study all classification MLAs given the abundance of MLAs and

MLAs variants that could be applied. Because of this, we narrowed the studied algorithms to

the following set: for unsupervised algorithms, we will study the K-means algorithm, for super-

vised we will review Naive Bayes, Linear Discriminant Analysis (LDA)/ Quadratic Discriminant

Analysis (QDA), AdaBoost, Decision Trees, and Random Forest, and for neural networks we

will study Support Vector Machines with the Radial Basis Function Kernel and the linear kernel

and we will review the Multilayer Perceptron feedforward artificial neural network.

K-means

K-means is a popular clustering algorithm, used in works like [34] where it performed traffic

classification using only the first five packets of the flow, and in works like [35], where K-means

was used alongside Support Vector Machine to classify traffic with an accuracy of 95%.

K-means implements the usage of clusters defined by k centroids (points which are the center

of a cluster) of the dataset. A point is considered to be in a particular cluster if it is closer to that

cluster’s centroid than any other centroid [36]. Algorithm 1 summarizes the steps of K-means

as explained by [36], where x(1), ...,x(m) is the dataset denoted by m instances, and each instance

is grouped in cluster c(i) with i = 1, ...,k where k represents the number of clusters.

Naive Bayes

Naive Bayes is a supervised learning algorithm based on the application of the Bayes’ theorem,

which studies the probability of an event given prior knowledge. In Naive Bayes the prior
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Algorithm 1 K-means
Require: {x(1), ...,x(m)},k

Initialize cluster centroids µ1, ...,µk ∈ Rn randomly.
repeat

for all i do
c(i)← argmin

j
||x(i)−µ j||2

end for
for all j do

µ j← ∑
m
i=1{c(i)= j}x(i)

∑
m
i=1{c(i)= j}

end for
until convergence

knowledge is the ground truth. Its name comes from the “naive assumption” that stipulates that

there is conditional independence between every pair of features given the value of the class

variable [37]. Algorithm 2 shows the Naive Bayes algorithm as explained in [38].

Algorithm 2 Naive Bayes

P(y|x1, ...,xn) =
P(y)P(x1,...,xn|y)

P(x1,...,xn)
. Bayes’ Theorem

P(xi|y,x1, ...,xi−1,xi+1, ...,xn) = P(xi|y) . Naive Bayes assumption

P(x1, ...,xn|y) = P(x1|y)P(x2|y,x1)...P(xn|y,x1, ...,xn−1)

P(y|x1, ...,xn) =
P(y)∏

n
i=1 P(xi|y)

P(x1,...,xn)
. We can substitute for all i

P(y|x1, ...,xn) ∝ P(y)∏
n
i=1 P(xi|y)

Since P(x1, ...,xn) is constant, we might say the probabilities are proportional. In addition,

by analyzing P(y|x1, ...,xn) we can determine which label is more likely to provide the correct

class.

For traffic classification, Naive Bayes is usually modified or used alongside other algorithms

for improved accuracy, for instance, in [39] refinements for Naive Bayes traffic classification

were made. Without those refinements, Naive Bayes had an accuracy of 65%, however, with the

refined variants it had an accuracy of 95%.

19



LDA/QDA

Linear Discriminant Analysis (LDA) is a supervised classifier that models the class likelihood

as a Gaussian distribution in a linear space [40]. LDA is regarded as a simple method that can

be derived via a number of approaches [41]. As stated in [42], “(LDA) can be used to perform

supervised dimensionality reduction, by projecting the input data to a linear subspace consisting

of the directions which maximize the separation between classes”.

In [40] it is assured that “(LDA) arises in the special case when we assume that the classes

have a common covariance matrix”, however, when their covariance matrices are different, the

space becomes quadratic. In this sense, LDA is a special case of Quadratic Discriminant Anal-

ysis (QDA).

Classification by either LDA or QDA is similar to Naive Bayes in that the process requires

the calculation of probabilities. Equation 2.1 show the steps required to calculate the LDA/QDA

outcome for classification problems as presented in [42].

P(y = k|X) =
P(X |y = k)P(y = k)

P(X)
(2.1a)

P(y = k|X) =
P(X |y = k)P(y = k)

∑i P(X |y = i)P(y = i)
(2.1b)

P(X |y = k) =
1

(2π)d/2|∑k |1/2 exp(−1
2
(X−µk)

t
−1

∑
k
(X−µk)) (2.1c)

Where d is the number of features.

Adaboost

Introduced in [43], Adaboost is a supervised MLA based on the usage of boosting, “Boosting

refers to this general problem of producing a very accurate prediction rule by combining rough

and moderately inaccurate rules-of-thumb.” [43] The rules-of-thumb are found by an algorithm
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refered to as weak learner. The Adaboost algorithm adjusts adaptively to the errors of the

weak learners. To achieve this, Adaboost combines the weak hypotheses by summing their

probabilistic predictions. Algorithm 3 shows the Adaboost algorithm presented by [43]

Algorithm 3 Adaboost
Require: < (x1,y1), ...,(xN ,yN)>,y ∈ {−1,+1}, Iterator T

Initialize weight vector w1
i ← 1

N for i = 1, ...,N
for t← 1,10 do

pt ← wt

∑
N
i=1 wt

i
. Set

ht ←WeakLearner(pt) . WeakLearner returns X so that X → [0,1]

εt ← ∑
N
i=1 pt

i|ht(xi)− yi| . Calculate the error of ht

Set βt ← εt/(1− εt)

wt+1
i ← wt

iβ
1−|ht(xi)−yi|
t . New weights vector

end for

Decision Tree

Decision Trees are a family of solutions which base their methods in the partition of the feature

space into a set of rectangles, and then fit a simple model in each one [40]. A popular tree-based

classification method is CART (Classification and Regression Tree). Decision Trees are based

on recursive partitioning according to the mean of Y in each region. In CART, the difference

between regression and classification is criteria for splitting nodes and pruning the tree.

Random Forest

A random forest is defined by [44] as: “a classifier consisting of a collection of tree-structured

classifiers {h(x,Θk),k = 1, ...} where the {Θk} are independent identically distributed random

vectors and each tree casts a unit vote for the most popular class at input x.” In that definition,

Θk represents a random vector of the kth tree to create an ensemble of decision tree predictors.

Algorithm 4 shows the Random Forest algorithm as presented in [45].
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Algorithm 4 Random Forest
Require: A training set: < (x1,y1), ...,(xN ,yN)>, features F , and number of trees in forest B

function RANDOMFOREST(S,F)
H← /0
for i ∈ 1, ...,B do

S(i)← A bootstrap sample from S
hi← RandomizedTreeLearn(S(i),F)
H← H ∪{hi}

end for
return H

end function
function RANDOMIZEDTREELEARN(S,F)

for each node do
f ← very small subset of F
Split on best feature in f

end for
return The learned tree

end function

SVM

According to [32], Support Vector Machines (SVM) is a classification supervised learning al-

gorithm that is driven by the linear function wᵀx+ b. SVM outputs class identity rather than

probabilities. A defining feature of SVM is the kernel trick, which consists of rewriting MLAs

exclusively in terms of dot products between examples, this allows the linear function used by

the support vector machine to be re-written as:

wᵀx+b = b+
m

∑
i=1

αixᵀx(i) (2.2)

A feature function φ(x) can then be used to produce an output that replaces x so that the

kernel function is defined as:

k(x,x(i)) = φ(x) ·φ(x(i))) (2.3)

It is also stated in [32] that, in many cases, φ(x) might be infinite dimensional. To solve
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this issue, the kernel function can be rewritten as k(x,x(i)) = min(x,x(i)) and would be “exactly

equivalent to the corresponding infinite-dimensional dot product”. The most commonly used

kernel is the Radial Basis Function (RBF) kernel, also known as Gaussian kernel. RBF decreases

its value along lines in v space radiating outward from u. RBG can be expressed as:

k(u,v) = N (u− v;0,σ2I) (2.4)

Where N (x; µ,∑) is the standard Normal density.

MLP

Multilayer Perceptrons (MLPs), also known as feedforwarding neural networks, are deep learn-

ing models that employ intermediate computations to approximate some function f ∗, so that,

for instance, a classifier y = f ∗(x) maps an input x to a category y. Therefore, MLPs define a

mapping y = f (x;θ) and learns the value of the parameters θ that result in the best function

approximation. There are no feedback connections in which outputs of the model are fed back

into itself [32]. Algorithm 5 shows the MLP classification algorithm as described in [46].

2.3 Internet Traffic Classification

In this section concepts of traffic classification are reviewed to provide context on the different

methods. Section 2.3.1 presents a brief summary of some techniques used in different layers

of the OSI model. In section 2.3.2 the traffic classification methods commonly found in the

literature are summarized, to support this, section 2.3.2 defines some aspects of the classification

by port matching, section 2.3.2 provides context of classification by DPI, section 2.3.2 descibes

the statistical based approach. Section 2.3.2 presents the perspective on traffic classification by

behavior analysis. In section 2.3.2 the general context of ML as traffic classifier is given.
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Algorithm 5 MLP
1: Initialize total error to 0
2: Apply first pattern as the input and train the neural network
3: Get error pattern for each output neuron in network and calculate the total error
4: if last pattern has trained then
5: Start again
6: else
7: Load next pattern
8: Train
9: end if

10: if last has trained then
11: if Total error is less than target error then
12: STOP Training
13: else
14: Repeat steps 1-4
15: end if
16: else
17: if Last pattern has not trained then
18: Repeat 4
19: end if
20: end if
21: Apply the test patterns as the input to neural network to get the classified results

2.3.1 Introduction to Traffic Classification

Traffic classification can be defined as the use of policies to identify a subset of traffic based

on the content of some portion of the packet header [47]. In the recommendation [48], it is

defined as a tool for specifying a subset of data packets for subsequent treatment as indicated in

the action part rule. As stated in [4], traffic classification is a requirement for the traffic flows

prioritization, which enhances the performance of a network.

Traffic classification can also be used to provide network security since it can detect new

forms of malware that may threaten network links. Furthermore, traffic classification can be

implemented in ISPs to optimize their networking services to increase return on capital invest-

ments, including application-based service differentiation and content-sensitive pricing [8].

Identification of flows may use the Type of Class field for IPv4 packets or the Traffic Class

field for IPv6 packets, as Differentiated Services (Diffserv) does [49]. For instance, in [50]
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diffserv (Differentiated Services abbreviation) is used alongside the MAC procedures proposed

in the standard IEEE 802.11e to provide QoS in wireless LAN networks.

Another tool employed in traffic classification is the MPLS (Multiprotocol Label Switching)

architecture. MPLS assigns a label to each packet so routers read the label instead of performing

a packet header analysis [51].

However, according to [52], the lack of QoS signaling and of an effective service pricing

mechanism have obstructed the deployment of QoS solutions such as DiffServ and IntServ, and

[41] affirms that “service differentiation mechanisms like diffserv only allow a relatively small

number of application classes”. In addition, most of the network traffic classifiers at transport

layer, are based on port matching [53]. Finally, QoS must minimize the vulnerabilities of the

resources and data [54]. To secure services, applications such as Secure Shell (SSH) and Skype

encrypt their traffic.

2.3.2 Methods for traffic flow classification

In this section we will review the most commonly used methods for traffic flow classification.

There are 5 main methods used: port matching, DPI, Statiscal Analysis, Behavior based, and

Machine Learning.

Port matching

As the name implies, port matching classification method aims to identify a packet based on its

port number. This sort of classification is considered to be the simplest and quickest form of

classification [34] yet it has a low accuracy (<70% 55). In [8] three reasons are given to explain

this situation: applications without IANA registered ports, users and application designers using

alternate ports to avoid firewalls, and shortage of IPv4 addresses. Additionally, some applica-

tions, such as P2P services, does not utilize predefined ports [56], and some server ports are

dynamically allocated as needed [41]. Finally, classification by port matching might become a
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security hassle since, as defined in [41], “trojans and other security (e.g. DoS) attacks generate

a large volume of bogus traffic which should not be associated with the applications of the port

numbers those attacks use”.

DPI

DPI is defined in the recommendation Requirements for deep packet inspection in next gener-

ation networks ITU-T Y.2770 [57] as “Analysis, according to the layered protocol architecture

OSI-BRM, of payload and/or packet properties”. DPI uses policies conditions, referred as DPI

signatures, that identify applications and determine whether an action (policy) should be taken.

In payload-based traffic classification, the payload is compared to a string of bytes to corre-

late it with some application [8]. Normally, the payload classifiers compare the payload with a

set of previously stored signatures (pattern matching) [8].

[11] compared different DPI classification tools. They acquired a dataset of traffic flows,

the packages were grouped by flows and each flow was collected together with the name of

the process taken from the Windows and Linux sockets. The DPI tools that were tested were

PACE, OpenDPI, NDPI, Libprotoident, NBAR, and four L7 Filter variants. Then, they divided

the dataset into two collections: in one collection the number of flows per application class was

uniform, while in the other collection the number of flows per application class was diverse,

imitating a more realistic scenario. When the DPI tools were trained in the dataset with a variant

number of flows per application class, the classifier with the highest accuracy was PACE, with

a 93.5% rate of perfectly classified packets (the rest were misclassified, not classified at all, or

classified correctly although with a lesser granularity). When trained with the uniform number

of flows per application class dataset, the classifier with the highest accuracy was NDPI, with a

82.73% rate of perfectly classified packets.

DPI classification is highly accurate but costly in terms of processing [58]. Moreoever, if

the payload is encrypted, DPI classification become less accurate [59] [60]. This poses a major

challenge since the traffic of encrypted data has become a standard nowadays [61], because of
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this, in Traffic classification on the fly, Bernaille et al. [34] qualify this sort of classification as

“unrealistic”. Finally, since DPI studies the payload, it may be considered intrusive in terms of

legal privacy [13].

Statistical Analysis

Classification using statistical approaches analyze traffic flows to correlate information among

them and/or the network configurations [7]. For example, in [56] a protocol fingerprint is pro-

posed, where the fingerprint represents IP flows produced by network applications exchanging

data through TCP connections. In [41] a classification method is presented based on the statistics

of applications in order to form signatures designed by the way they are used, e.g. interactively

or for bulk data. Some of the statistical-based approaches are adapted and improved by the ML

techniques [7].

Behavioral Analysis

Behavioral techniques try to identify the application that the host is using by analyzing the pat-

terns (number of connected hosts, transport layer protocol) of generated traffic 62. Classification

based on host behavior has proven to provide better results when combined with payload clas-

sification [63]. An example of this is [59], where the heuristic proposed in [8] was used. [64]

consists in the creation of IP addresses and ports pairs. This kind of analysis requires access to

the TCP/UDP packets in both the receiver and the transmitter.

[7] asserts that behavioral patterns can also be used in graph modeling to connect hosts where

“graph theory is used to find highly connected nodes (hosts), number of connections, and opened

ports, among others”. In [65] is said that the drawback of behavioral solutions is the specificity

of their requirements.
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Machine Learning

Machine Learning classification has shown to be viable both in cost and accuracy [10] [11] [12].

Previously we mentioned [11], where several DPI classification tools were compared. In that

work, the Machine Learning algorithm C5.0 was tested. To test it, the algorithm was trained

with two sets of data: one with the same number of flows per application class, and another

with different number of flows per application class. The purpose of training the MLA with two

different datasets was to determine whether emulation of traffic flows could be used as a method

to generate training datasets for Machine Learning. The dataset with the same number of flows

per application class represents emulated data, while the dataset with different number of flows

per application class represents the opposite: data generated by actual traffic consumption.

When trained with the same number of flows per application class, the MLA had an accuracy

of 60.91% while when trained with a different number of flows per application class, the MLA

had an accuracy of 98.45%. This showed that datasets used for MLA training require a certain

degree of human-like behavior, such as an environment capable of generating traffic flows as

close in diversity as the ones employed in traffic classification.

The challenge of using Machine Learning classifier is the absence of ground truth [8]. In

most of the literature, researchers mainly use an implementation of local package capture, as

in [23]. However, this lack of dataset standard represents an issue that may imply the usage

of privacy laws violations [13] as well as the employment of old data. Researches in the area

encourage the development of tools that label training data [66].

This issue grows severe given the rapid increase of new applications. In [67] is explained that

traffic clustering has the potential of identifying unknown applications, and propose a two-phase

clustering algorithm using statistical and packet payload features.
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Works of MLAs for Internet Traffic Classification

Given that there are several categories and implementations of MLAs, many have been studied

as network traffic classifiers. These studies cover different aspects of this topic. Firstly, it has to

be defined whether the tested method is to make a coarse-grained or a fine-grained classification.

According to [9], coarse-grained classification classifies data according to the application layer

protocols, such as HTTP and SMTP, whereas a fine-grained classification classifies data accord-

ing to specific applications. In the QoS context, is more common to work with coarse-grained

solutions because the requirements within each group are very similar [10], for this reason, the

presented solutions have a coarse-grained focus.

Another aspect that a study has to define is how the data is treated, whether it used a sort of

filter, data preprocessing, or data cleaning previous to the classification. In addition, it should

also state which MLA was utilized during the research. However, most importantly, it needs

to state how the training dataset was obtained, and if it was labeled, how it was so. Table 2.2

summarizes the work of MLAs as classifiers.

Table 2.2: Summary of works about MLAs as traffic classifiers

Work Summary Data Preprocessing Trainig Data Labeling

Erman et al. [17] K-means, DB-

SCAN, and

Auto-Class

Same number of samples

per flow type selected ran-

domly

Flows generated in the Internet

link of the University of Cal-

gary

DPI complemented with port-

based techniques

Bujlow et al. [10] C5.0 Noise Filter Volunteer-Based System Volunteer-Based System

Bujlow et al. [11] C5.0 - Volunteer-Based System nDPI complemented with

knowledge from the HTTP

headers

Li and Moore [12] C4.5 Filter based on TCP flow

characteristics

University router Hand classified using a

content-based approach

Li et al. [18] SVM - University router L7 Filter

Este et al. [19] SVM - Faculty router nDPI

Wang et al. [20] Random forest - Traces of the University of Bei-

hang

nDPI

Erman et al. [21] K-Means, DB-

SCAN, and EM

Clustering

- Traces of university DPI for non-encrypted data and

port-based heuristics for en-

crypted data

Erman et al. [22] Semi-supervised

algorithms

- Traces of university Cluster-based probabilistic as-

signment
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Singh and Agrawal [23] MLP, RBF, C4.5,

Bayes Net, Naive

Bayes

Experiments performed

with two datasets, one

full-feature and the other

one with reduced features

Package capture Wireshark

Singh [24] K-means and EM Correlation-Based Feature

Selection

Package capture Packet Capturing Software

Aouini et al. [25] C5.0 and KNN Extension of nProbe Tool

called Learning Feature

Extraction

From french ISP nDPI complemented with

knowledge from HTTP head-

ers

Bakhshi and Ghita [68] K-means and

C5.0

Conversion to Netflow for-

mat and Feature Selec-

tion expansion with nf-

dump utility

Netflow records collected from

2 PCs in two environments:

typical residential premises

and an academic setting

nDPI

Carela-Español et al. [28] C4.5 - Netflow records collected from

the Polytechnical University of

Catalunya (UPC)

L7 Filter

Present Work Adaboost, MLP,

NaiveBayes,

QDA, KNN,

Decision Tree,

Random Forest

Noise Filter & Sublabeling Cloud Platform Cloud Platform

[17] implements the management of clustering MLAs for traffic classification with data from

the transport layer; the traffic used as training consisted of flows generated in the Internet link of

the University of Calgary for one hour (60 GB) and a public trace of the University of Auckland.

In [12] a C4.5 algorithm was used that classified with a 99.8% accuracy, the traces collected for

the training were gotten during two consecutive weekly days of Internet traffic with an interval

of 8 months at the University of Cambridge. In [10] the training data was obtained through

the association of application name and flows, which was gotten through a system of volun-

teers which consisted in installing clients on the computers of the volunteers and on a server

responsible of the collected data storage; a C5.0 algorithm was implemented and had an average

accuracy between 99.3% and 99.9%.

In [18] a Support Vector Machine (SVM) was used to classify 7 different classes of applica-

tions with an accuracy of 96.9% when the data is not biased (that is, there is the same number

of flows per application class) and 99.4% when there is bias; the data used was obtained from

a router of the university for a total of 8 hours in a period of one week. In[19] the application
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protocol responsible for sending packets through a monitoring node is recognized, its analysis

is by SVM obtaining an accuracy of 92.37% in the data collected from the faculty router.

[20] proposes an improvement to the network traffic classification by random forest that

consists in granting a probability of selection to each variable according to its classification

priority. The model was trained with traces from Beihang University, which were collected on

campus. The network traffic classification by standard random forest was compared with the

proposed version and there was an average accuracy improvement from 96.846% to 96.999%.

[21] uses non-supervised Machine Learning algorithms to form clusters of unlabeled flows in

real time (classified according to the first TCP packets of a communication) with 95% accuracy,

their training data was obtained from an external university. [22] classifies in real-time using

semi-supervised algorithms with an average accuracy of 94%. The proposed semi-supervised

algorithm consists of the clusterization of labeled and unlabeled flows. This approach allows the

mapping of unlabeled flows to known labeled data.

In [23] compared five classification MLAs: MLP, RBF, C4.5, Bayes Network, and Naive

Bayes, and tested them with a dataset obtained by package capture. From the original dataset,

a second one was created through the implementation of Feature Reduction named Best First.

Both datasets were used in the experimentations. It was concluded that Bayes Network and C4.5

are effective ML techniques for IP traffic classification with accuracy in the range of 94%. In

[24] K-means was compared with Expectation Maximization (EM) concluding that K-Means is

better than EM. Their data was obtained by package capture.

In [68] individual flow classes were derived per application through K-means and were fur-

ther used to train a C5.0 decision tree classifier, in order to improve the results of records from

the monitoring tool Netflow. The obtained accuracy in that research was 92.37%. In [25] an

approach is proposed that consists of early identification of packets using the C5.0 algorithm

achieving an accuracy of 98.8%
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2.4 Conclusions

In Section 2.1, we defined the types of service that are offered in a Cloud Computing context, as

well as deployment models which can be used to determine a certain behavior within the cloud

platform.

In this chapter we divided the background in four sections. In Section 2.3.2, we described

the state of the current situation on traffic classification. In Section 2.2 we summarized some as-

pects of Machine Learning in the context of classification problems. We established definitions

and concepts that help us contextualize the issue with the lack of ground truth and the advan-

tages of having an architecture that generates labeled data. We reviewed the implementation

requirements for unsupervised MLAs and supervised MLAs. In addition, we studied different

MLAs. We answered the questions: How can Machine Learning solve classification problems?,

and Which MLAs exist for classification?.

In Section 2.3, we gave a brief summary of the Internet classification methods. We men-

tioned the built-in mechanisms such as diffserv, and MPLS to provide QoS. In addition, we

listed the most common methods for traffic flow classification with some of their characteristics.

We answered the question: What methods are most commonly used?.

And in Section 2.3.2, we reviewed the most common methods for internet traffic classifica-

tion found in the literature. We compared their accuracies and observed how was the ground

truth gotten. By doing this analysis we have answered the questions What is the background of

current solutions, What MLAs are mostly used and how accurate are them?, and How was the

ground truth obtained in other researches?.
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Chapter 3

Requirements Analysis

In this chapter, we present our proposal: a cloud architecture capable of creating labeled traf-

fic flows for later ML analysis. In Section 3.1, we provide the definition of the ARCADIA

methodology. In Section 3.2, we define the principles used for this architecture. In section 3.3,

the operational capabilities are studied and in section 3.4 the system requirements for a specific

scenario analyzed.

3.1 ARCADIA

As part of the methodology, we implemented the ARCADIA method to analyze the system

requirements for the cloud architecture, and then used the Capella software to implement the

design. ARCADIA (ARChitecture Analysis and Design Integrated Approached) is a Model-

Based engineering method for systems, hardware, and software architectural design. It enforces

an approach structured on successive phases which establishes a separation between needs and

solutions. The needs are represented in the operational analysis and in the system analysis, while

the solutions are reviewed in the logical and physical architectures [69].

The first layer is the Operational Analysis which is focused on the user’s activities. It aims to

establish what system users must achieve by the identification of actors that have to interact with
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the system, their goals, and the interaction between them. The second layer is the Functional

and Non Functional Need and represents the requirements for the system, i.e., this layer provides

the system analysis. The third layer is the Logical Architecture, which represents how will the

system work to meet expectations, it describes the functions to be performed and assembled,

and continues with the identification of the operational components. Lastly, there is the Physical

Architecture, explains how will the system be built with a focus on the functions required by the

implementation and technical choices, and reveals the behavioral components that perform these

functions [3]. Figure 3.1 summarizes the phases of the ARCADIA method.

Figure 3.1: ARCADIA Phases [3]

By using the ARCADIA method, we adhere our solution to a standard, so it may be repli-

cated in other research projects. To implement ARCADIA, we used the Capella software.

Capella

Capella is the Model-Driven Engineering (MDE) open-source solution provided by Thales. It

is a Tooled-Up-Process solution that enacts Systems Engineering and Software Architecture

Engineering recommendations defined by ARCADIA [70]. This solution provides a process

and tools for graphical modeling of systems, hardware or software architectures.
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3.2 Proposed Cloud Architecture

This thesis is based in “Emulating Application and User Behavior on a Cloud Platform for

Later Traffic Analysis”[1]. We used an Infrastructure as a Service model (IaaS) because in

this service model the consumer is able to implement and execute any software [29]. The IaaS

consumers have access to virtual machines, accessible storage through the network and network

infrastructure components [71]. Once the model is deployed, we may offer a Platform as a

Service (PaaS) solution for the implementation of distinct models for traffic flow generation.

In our architecture, as illustrated in Figure 3.2, we propose the employment of two types

of virtual machines: clients, and routers. Each client machine connects to the Internet through

a router, where the latter performs a sniffing process and stores the generated traffic flows in

local pcap files. The client machine performs certain internet activity that resembles human-like

behavior. Each client machine will generate traffic flows based on the activity of the employed

application; we call these activities scenarios. Before the deployment of a scenario, the client

sends a UDP packet to the router in order to inform it about the type of flow is going to send

and/or request, this allows the router to store the pcap files by flow type, and thus, providing a

labeling system. In addition, once the scenario is over, the client virtual machine (VM) sends

another UDP packet to inform the router that the performance of the scenario has finished.

Figure 3.2: Summary

Each client has two components: the agent of organization and the performer. The per-
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former is the component in charge of the scenarios implementation. Given that we only use one

scenario per client machine, the labeling process at the router is simple. In Figure 3.3, the rela-

tionship between the router component, the sniffer subcomponent, and the client virtual machine

is shown.

Figure 3.3: Router Component Diagram

With the definition of the general concept of this solution, we implement the ARCADIA

method using the Capella software to model the operational requirements and the functional and

non-functional need, this process constitutes the requirements analysis. From the requirement

analysis, we are able to find the key elements and define them. Once every element is defined,

we can model the logical and physical architecture.

3.3 Operational Analysis

In this research, we propose the implementation of a cloud architecture for labeled traffic genera-

tion and ML classification. The first step towards a proper design for the solution is to determine

the basic needs that have to be satisfied by the proposed solution. To achieve this, we use the

ARCADIA method with Capella.

In the ARCADIA method, as defined in [3], the operational analysis captures what system

users must achieve as part of their work or mission. In the operational analysis, the model

is based without any assumptions about how the system will contribute; in other words, the

operational analysis studies the problem and defines which steps are required in a general view.

In this sense, the actual system is irrelevant in the operational analysis.

Given that the goal of the proposed architecture is to provide an environment of data gener-
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ation and data labeling, the operational capabilities can be defined as follows: scenario imple-

mentation, packet sniffing, platform status check, provide Internet access, and data treatment.

Figure 3.4 represents the operational capabilities as well as the actors and components they re-

quire. The aim of this proposal is the systematic generation of labeled data for ML analysis, to

provide this, five operational capabilities must be satisfied.

Figure 3.4: Operational Capabilties

Provide Internet Access

The first capability the system ought to have is accesing to the Internet. Since in this level of the

ARCADIA method is imperative to define actors and their interactions with the system, we may

define the router of the cloud platform as the first actor in the model, having the Internet itself

as a component.

Perform Scenario

The second operational capability is scenario performance. We define scenario performance as

the deployment of a set of steps required to mimic human-like behavior of certain application

activity. The two components required for the implementation are the initialization agent and

the performer.
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Sniff Packets

One of the most relevant capabilities in the system is regarding packet sniffing. This capability

enables the data generation and its labelization. This capability requires the sniffer component,

however, since our proposed solution is to capture data at the router, we define the sniffer compo-

nent as a subcomponent for the router component. For each scenario performance, the captured

data ought to be stored in a database for later analysis.

Offer Data Treatment

If the ground truth generation requires the scenario implementation capability and the packet

sniffing capability, then the storage of ground data requires the data treatment operational ca-

pability. In this level, and for any given scenario, data treatment will be defined as a filtering

process which enables the identification of behaviors in the data and an ML analysis. The be-

haviors found through the filter component facilitate pattern recognition among the data, which

enables a sublabeling and filtering process. The ML analysis component is responsible for the

MLA selection process and their implementation.

Manage Platform

Lastly, the architecture should inform a human supervisor if it detects an error during the im-

plementation of the scenarios. For this reason, a human actor is included in the model. Since

the platform is autonomous, the responsibility of the actor is to check the status of the platform

and if out-of-scope errors are met, the human supervisor has to manage them. In this regard, an

out-of-scope error is an error which the platform cannot resolve.
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3.3.1 Operational Contex Model

Figure 3.5 shows the operational context for this solution, where it can be observed that the

process begin when the initialization agent sends the activation order to the performer, the per-

former then reviews its own status. Upon reviewal, the performer indicates to the sniffer the

type of flow it will generate, this sets the label. The performer deploys the scenario through the

connection given by the router, the router connects to the Internet through the router and utilizes

the sniffer to capture the packet data. Once the scenario finishes its deployment, an ending ac-

knowledgment is sent to the sniffer so it the label and store the data in a database server. From

the database server, the ground truth is obtained and it is separated into two sets. The first set is

sublabeled for the offline training and the second filters noise from the data and use it to test the

online implementation.

Figure 3.5: Operational Context

The flow of the process can be seen in Figure 3.6, which represents the operational activity.

The operational activity diagram illustrates how the solution will interact with its elements. In

our proposed solution, the operational activity shows the processes of the beginning of any given

scenario and its proper ending.
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Figure 3.6: Operational Activities

3.4 System Analysis

According to [3], the system analysis delimits the functions required of the system, distinguish-

ing them from those assumed by the users or external systems. It is also said that, in system

analysis, it is essential to limit the functional analysis to capture only the need, excluding any

implementation choice or details.

Through the operational analysis, we can perform a mission analysis to model the functional

needs of our model. Each mission is composed of a set of capabilities and actors. From the

operational capabilities analysis, four key missions can be defined: scenario implementation,

packet sniffing, platform supervision, and data treatment.

Implementation

For the scenario implementation mission, the system requires to generate flows according to the

scenario, i.e., the scenario must work properly. Therefore, the first capability can be summarized

as the generation of flows. The second capability for this mission is the performance of self

status to determine whether the current configuration is providing the expected results. A third

and fourth capability the mission requires is the communication with the sniffer component,

to send the flow type first (send label) and, once the implementation is over, it should send an

acknowledgment of the scenario ending its performance. The scenario implementation mission

requires the initialization agent and the performer component as actors.
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Packet Sniffing

The packet sniffing mission is based on two capabilities and two actors. The first capability is

to monitor packets and use their statistical features to form flows and label them with the infor-

mation sent by the performer. Once the sniffer receives the acknowledgment of the conclusion

of the scenario, it is required to store the labeled data in a database. The involved actors are the

sniffer component and the database server.

Platform Supervision

The platform supervision mission depends on the activities performed by the human supervisor,

which in this context, is an actor. The capabilities of this mission are to configure the platform

and to receive notifications from the system. The system must be capable of detecting an error

and inform the supervisor of it. In turn, the supervisor should be capable of configuring the

elements of the architecture.

Data Treatment

Lastly, the data treatment mission requires four capabilities. In this proposal is presented a sub-

labeling and filtering solution for a later classification MLA. The solution requires an offline

training for an online classification. These four components comprise the capabilities for this

mission. The actors required for the management of this mission are the filter, the ML analy-

sis, and the database server. Figure 3.7 displays the four missions, their capabilities, and their

involved actors.

3.4.1 Functional & Non Functional Need

[3] also states that from the operational analysis it is required to define the actors which the

system will interact with and to assign each of the operational capabilities to a function. The
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Figure 3.7: System Missions

creation of these function correlate with the implementation of the scenario. Certain activities

require additional systems that enrich the scenario with features that allow better performance.

To illustrate the system requirements, Figure 3.8 shows the system analysis for the streaming

service performer.

The scenario requires the implementation of a system that allows the streaming service on

a browser, therefore, browser control is needed. The implementation of the scenario shares the

same general structure of the scenario, i.e., the initialization agent indicates the activation of the

scenario, the performer, if able, deploys the scenario, the router connects the performer to the

Internet while the sniffer captures data and later stores them in a database server. However, to

implement browser control, it is required an additional system. To achieve this, we propose the

usage of the Selenium API.

Selenium can be defined as a system that operates based on the input of the performer. Once

integrated to the rest of the system, the performer is contextualized with Selenium so that it

generates a web link to a streaming service and send it to the Selenium system to generate the

corresponding traffic flows.

Through the implementation shown in Figure 3.8 the system analysis for the streaming video
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Figure 3.8: System Analysis

scenario is represented, hence it can be said that in a diverse collection of scenarios, different

systems will be required. In the scenarios used for this research, it was found the requirement

for different systems in three scenarios.

In the scenario of email activity, an additional system is required to provide the mailing

service. For the scenarios of chat and file transfer, the Skype API might be implemented. As a

system, the Skype API should be able to connect to a valid account and send text and/or files to

another valid Skype account. Similarly, the P2P scenario would require an additional system to

function as a seed and/or leech.

3.5 Conclusions

In this chapter we presented our system analysis for a cloud architecture for the creation and

labeling of internet traffic flows. We defined the system requirements based on the operational
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capabilities obtained through the usage of the ARCADIA method. We answered the questions

What is the workflow for a traffic emulation system?, and What does the system requires?.

From the system architecture, we can observe that the requirements of the system will be de-

termined by a sort of activity, for instance, the streaming service performer will need a different

set of components than the FTP performer, however, this platform is designed to generate data

which shall go through a sublabeling and filtering process based on ML, therefore, it is required

to define the ML components that will be part of the proposed solution.

As part of an integrated solution, this research aims to design a service-oriented model which

implementation uses ML as a process of filtering, sublabeling, and classification, hence the ML

components are prerequisites of the implementation. In short, the system requirement analysis

demonstrated that to implement the solution, the ML components have to be defined before

structuring the implementation of the solution. In the following chapter, the ML solution will

be defined so that during the implementation design, we understand the components before

allocating them in the final solution.
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Chapter 4

Machine Learning solution

In this chapter we define our Machine Learning solution for traffic flow classification based

on the requirements analysis. Specifically, this chapter analyses the behavior of the data filter

component and its relation to the classification process, to achieve this, Section 4.2 reviews the

data requirements for the application of MLAs in this context. In Section 4.3, a two-step method

for data preprocessing is presented consisting in offline sublabeling process and an online filter.

4.1 Proposal

A traffic flow is defined by the recommendation [72] as “a sequence of packets sent from a

particular source to a particular unicast, anycast, or multicast destination that a node desires to

label as a flow”. We may define as flow all the packets related to a given application use. There

are different types of packets in the same flow for instance, the packets used in a TLS handshake

may be distinct from the rest of the packets. Moreover, every packet generated by the application

is part of the flow disregarding in which node it was instantiated.

In this research, the ML components need to classify traffic flows based on their statistical

data. Such data will be retrieved from the DB servers od the platform, which store the data of

the sniffed packets. Therefore, the ML components will use the retrieved data during its training
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for later implementation. We approach this requirement by studying the training phase of the

algorithm and its implementation. The training phase of the algorithm will be referred to as the

offline training while the implementation will be referred to as the online testing.

During the offline training, an ML classifier is trained with traffic flows data, however, in-

stead of adhering to one MLA, we propose the usage of a previous clusterization of data to form

groups of data that share features. If a cluster has a strong bias towards a class, then there is a rea-

sonable argument to declare that flows within that cluster belong to the biased class. Likewise,

if a cluster has non-representative data, i.e. flows within the cluster have similar features despite

being from different classes and, in relation to the other clusters, the number of flows within

the cluster is small, then flows that belong to the cluster can be defined as noise and therefore,

they can be filtered out. In short, we can use clusterization to identify flows based on the cluster

they are grouped in and make a decision based on the cluster. Additionally, the same filter can

be inherited from the offline training to the online testing so that, during implementation, the

workload for the ML classifier is reduced.

The online training consists in labeling the data, and omit those entries which are labeled as

noise. Additionally, the online training uses the clusters formed in the offline training to group

subflows and, if possible, label them. To label a flow during online training, the cluster that it

is assigned to must have a defined label obtained during the offline training. By doing this, the

number of flows labeled by the ML classifier is reduced. A method similar to this was used in

[68]. Figure 4.1 shows the implementation of the online and offline approach of our solution,

where data is separated in a dataset for offline training and a dataset for online testing.

4.2 Data collection and labeling

In [73] a 5-tuple is proposed for identifying packets by subflow. The 5-tuple consist of the source

IP address, the destination IP adress, the source port, the destination port, and the used proto-

col. In order to have one subflow per direction as opposed to two, in the mentioned work it’s

suggested to reverse the source and destination elements of the packets in the opposite direction
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Figure 4.1: Offline and Online Architecture

of the first observed packet. Therefore, we can build a database containing the statistical infor-

mation regarding each subflow and their respective flow. While in [73] the data set is classified

by 249 features, we selected 22 as Machine Learning features after applying a feature selection

process.

The first features we selected were the number of packets of any given flow and divided

them in two features: number of packets from source to destination, and number of packets

from destination to source. Additionally, we selected 20 features shown in Table 4.1, which

utilizes the Inter-Arrival Time of each packet (IAT) in the Source to Destination direction (SD)

as well as the Destination to Source direction (DS). Likewise, it uses the packet length in both

directions.

Table 4.1: Additional selected features for statistical classification
Property\Stat Median Mean Max Min Variance

IAT SD * * * * *
IAT DS * * * * *

Packet Length SD * * * * *
Packet Length DS * * * * *

IAT stands for Inter-Arrival Time
The SD banner marks the packets going from the Source of the initial node
to the Destination of the intial node
The DS banner marks the packets going from the Destination of the initial
node to the Source of the intial node

By using these statistical features, we can analyze the subflow behavior, including which
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flow generated it.

4.3 Sublabeling and Filter

Machine Learning can be used to obtain relevant information in a dataset, for instance [74]

presents an algorithm to discover knowledge in databases implementing data mining methods

which, in their majority, are based on ML techniques [7]. [66] employs the K-means clustering

algorithm to group a dataset by similarities.

In our solution we implemented the K-means algorithm to sort the subflows into clusters.

Each cluster might consist in an arrange of heterogeneous flow types since several flows generate

similar subflows. Since the clusterization algorithm does not take into account the labels of the

flows, the similarities it finds will be based solely on the subflow characteristics.

To define the number of clusters, we used the elbow analysis. We obtained the inertia and

compared it with an incline. During the experimentation, we noted that the maximum value for

the best number of clusters is lesser than the number e raised to the number of flow types (i.e.,

eNFT where NFT is the number of flow types), however, it usually is greater than the number of

applications, and the square of the number of applications, but lesser than the number of flow

types raised to itself (i.e., NFT NFT ) . However, to reduce computing time, we set the maximum

number of clusters to be ten times the number of flow types (i.e., 10 ∗NFT ), since it works

during a linear time and in most cases, the best number of clusters is lesser than ten times the

number of flow types.

Based on the clusters, it is viable to label cluster with its most representative flow type, if

there is such label. Firstly we must determine whether a label exist within a cluster so that the

cluster might be labeled based on the subflows it contains. To determine this we propose, in

Algorithm 6, a method. This method consists in obtaining the relativity of flows per cluster, that

is to say, if cluster Ci can be represented as a group that might contains Ci, j where j is a flow
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type, then the relative cluster might be defined as:

ˆCi, j =
Ci, j

∑ j Ci, j
(4.1)

If we then define the relevance of a cluster in terms of flows, we might express it as R =

∑ j Ci, j. We can apply a similar method to discover noise in the cluster.

Algorithm 6 Sublabeling
Require: C,N,M,CERTAINTY,NOISE

NewLabels ∈ /0N

for i← 1,N do
Ri = ∑∀ j Ci, j
for j← 1,M do

ˆCi, j =
Ci, j
Ri

end for
end for
for i← 1,N do

R̂ = Ri
∑∀ j R j

MAX = 0
LMAX ← /0
for j← 1,M do

if ˆCi, j > MAX then
MAX = ˆCi, j
LMAX ← j

end if
end for
if 1−MAX ∗ R̂ >CERTAINTY then

NewLabelsi = LMAX
end if
if R̂ < NOISE then

NewLabelsi =“noise”
end if

end for
return NewLabels

Where CERTAINTY defines the accuracy that would have been obtained if the cluster was

relabeled with the application with most flows in it. NOISE is the minimum relevance that

a cluster should have to not be classified as noise. For NewLabels there are three possible

outcomes: a previously defined label, the label noise, which implies that the cluster is noisy, or
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an empty string, which reveals that there is not sufficient information within a cluster to relabel

through this method. After grouping the subflows by clusters, we proceeded to apply the filtering

process.

4.4 Conclusions

In this chapter we reviewed an approach to infer statistical information about the packets and

use it to train the MLAs. We also proposed a two-step filter for noise reduction that implements

an offline training and an online filter. Through this filter we may answer the question How can

noise be detected?.

Furthermore, we defined the ML components and established that one component is required

to perform a clusterization process and a second component to perform traffic flow classification

through the usage of an MLA. The filter component provides a data filter and a sublabeling

process. During the offline training, the filter component is used to correlate clusters with types

of flow or classify them as noise. Traffic flows that belong to clusters that neither can be labeled

as a flow type nor as noise, will be used to train the MLA. On the other hand, the filter component

can be used similarly during the online testing, where it will inherit the correlation between

cluster and labels from the offline training in order to filter the noise out and, if possible, label

some traffic flows.

The ML analysis component can be defined then as the component where the MLA is trained

and then implemented. Both offline and online, the ML analysis component workload is reduced

by the filter component. Similar to the filter component, the ML analysis component inherits its

model from the offline training to the online testing.

From these definitions, we are able to define their implementation as a part of the cloud

platform. Therefore, we can now define the implementation of the entire cloud solution. In

the following chapter, we determine the implementation of the solution using the ARCADIA

method through the Capella software.
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Chapter 5

Implementation

In the previous chapter, we defined the elements for the ML components, and in the chapter

before that, we established that the requirements of any given scenario is defined in terms of the

scenario itself. In this chapter, we review the system analysis to provide the logical and physical

implementation of the platform.

The aim of the implementation is to generate a rich environment capable of generating a

large labeled dataset. To achieve this, a cloud platform was developed conformed of virtual

machines that generated traffic flows by connecting to Internet and deploying a preconfigured

scenario, and by virtual routers that sniff and label incoming traffic flows. This data capture is

performed by session, i.e., each time a scenario is performed, a sniffing session will open, then

it will capture the data of the incoming packets, and once the scenario is over, the sniffer will

store the information in a unique local file. Therefore, the number of local files is equal to the

number of correctly executed scenarios.

The implementation also requires a defined functionality that enables the ML analysis and

the filtered required for the offline and online training. Such functionalities, as well as the

ones used for traffic generation are studied in Section 5.1. Section 5.2 analyzes the physical

architecture for the implementation.
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5.1 Logical Architecture

From the system analysis, we know the missions that the platform must accomplish. We have

defined the key components for the solution and established their requirements. However, to

produce the expected logical results there must be an internal function that guarantees proper

results. In other words, it is necessary to ensure that the data generated by the platform has been

produced properly. From this perspective, properly generated data refers to labeled data which

performance was successful. The system should be able to discard the data produced with errors,

such as lack of connectivity, or errors related to the specific scenario, for instance, a streaming

performance where the browser could not open the video link.

The logical system should be also composed of a communication component that creates a

connection between the two kinds of virtual machines within the platform. Furthermore, the

logical system should define the needed functionality to interpret packets in order to detect the

flags sent through UDP packets from client to router.

5.1.1 Logical Components

The logical system in the ARCADIA method is used to represent the logical requirements for

the architecture in development. The aim is to describe the process and the order for the imple-

mentation with the identification of the operational components. The logical system employs the

usage of logical components, which communicate among themselves and with external actors.

In the presented research, five logical components are used. Figure 5.1 summarizes the logical

architecture.

Communication

The first implemented logical component is the communication component. The functionality of

this component is to assure the connection between the performer and the router. The communi-

cation between both actors is studied by this component, analyzing the status on both the router
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Figure 5.1: Logical Architecture

and the performer. From this component, errors in performance may be discovered, however, it

does not act upon failure, rather it works as a mean for detection.

Self-Healing

The self-healing component is based on one of the autonomic computing characteristics. The

self-healing property is able to discover, diagnose and react to disruptions without disrupting the

IT environment [75].

In the proposed solution, the most common error during implementation was the over-

performance, i.e., scenarios continued their performance despite reaching their ending point,

this problem affected the sniffing process. By not correctly ending the scenario, the sniffing

lapse observed overlapped sessions, therefore, created files that did not accurately represent one

session per run scenario. To solve this issue, once the communication component detects an

error on either side of the communication, the self-healing component receives an alert to which

it stops the performance and sends an alert to the human supervisor so that a former study can
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be executed.

Flow Processing

The flow processing component receives a UDP packet and translates it to a label, i.e., it inter-

prets the packet content as an initialize sniffing instruction and as a label to recognize the type

of incoming traffic flows. Through this label, the sniffer is able to categorize traffic flows by

session. The second function of this component is to close the sniffing session by translating a

second UDP packet from the performer as an acknowledgment of the conclusion of a session.

ML Analysis

The ML analysis component uses three functions. The first function is the MLA selection pro-

cess, which is required for testing different MLAs. Given that in this implementation the goal is

to test several MLAs, the aim for the MLA selection component is to execute different MLAs

and store their performance metrics for later analysis. The ML analysis component uses as well

the offline training and the online testing functions. The offline training function has a two-step

process, the first process is to partition the data and use the cluster labelization function from the

filter component to sublabel the data, the second step is to use the sublabeled data to train the

selected MLA. Similarly, the online training function utilizes the filter for its implementation.

Firstly, it also utilizes the cluster labelization to assign labels to well-defined clusters, reduc-

ing the amount of data the MLA has to classify. Then, it uses the filter function to eliminate

the noise from the dataset. With a clean and reduced dataset, the online testing performs the

selected MLA and provide its respective metrics.

Filter

To correctly implement the filter, its functions must be defined. The filter must complete three

tasks: data clusterization, cluster labelization, and data filtering. The component of data clus-
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terization groups in n clusters the ground truth it is given. The resulting clusters represent data

with similar statistical behavior.

The cluster labelization component requires the input from the data clusterization. This

component has two different roles depending on whether it is used by the offline training or the

online testing functions. If used by the offline function, the cluster labelization function receives

labeled data and returns sublabeled data, i.e., after clustering the dataset, the filter component

uses the labels of the ground data to assess the formed clusters and detect whether they represent

a specific application or application class, they are classless, or they are noise. The difference

between a classless cluster and a noise cluster is that a classless cluster is representative of the

data, however, it does not have a direct relation with any specific application class. On the other

hand, the noise clusters are classless clusters which do not represent data. If used by the online

testing, receives the new unlabeled clusters and the clusters from the offline training. With basis

on the offline clusters, the cluster labelization assigns the new data to the clusters and, if the

cluster they were assigned to has a well-defined label, then that data is labeled as such. In

addition, during online training, once the cluster labelization ends its process, the data filter is

used. This function inherits the labels provided by the previous function and uses them to detect

noise, and if it does, it eliminates it from the dataset.

5.2 Physical Architecture

In the ARCADIA method, the aim of the physical architecture is to define the requirements for

the system’s development. The objective of this architecture is to allocate the functionalities

of the system to physical nodes, such as sensors. To represent the requirements at this level,

the physical architecture utilizes three types of components: node components, behavior com-

ponents, and functional components. Node components represent the physical aspect of the

architecture, to do so, it uses physical nodes, physical actors, and physical links and ports. The

behavior components describe the performances a physical component has and uses component

exchanges to describe relations between behavior components and nodes. The functional com-
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ponents represent the physical functions that a physical node or actor has and links them with

functional exchanges.

In the presented research a six-node physical architecture with two physical actors was im-

plemented. Five of the proposed nodes are virtual components in the cloud platform, one of

which has a subcomponent. The physical actors for this architecture are the human supervi-

sor and the Internet. The human supervisor has the behavior of manage architecture, which

uses functions for analyzing the performer, the router, the router, the database server, and the

initialization agent.

The client component’s operations are categorized into five behaviors. The send initializa-

tion behavior contains the operations of the initialization agent, which requires to fulfill two

needs: set the time for each performance as well as the total time of repetitions between perfor-

mances, and to activate the performer. Each time the initialization agent activates the performer,

the self-analysis behavior determines whether the last performance was closed properly if not,

it sends an error acknowledgment to the detect failure behavior for it to stop the scenario and

alert the human supervisor. If the last performance was closed properly, then the self-analysis

behavior sends the activation order to the user emulation behavior. This behavior starts the

performance by sending the flow type to the router through a UDP packet, then it deploys the

scenario and locally stores the PID for later revision by the self-analysis behavior. Once the

performance reached its time limit, the user emulation behavior activates the finish scenario

behavior to properly close the session. A session is properly closed when the scenario is no

longer performed and a UDP packet is sent to the router acknowledging that the performance

has finished.

The router node is composed of the connect to router behavior and the sniffer subnode. The

connect to router behavior provides the basic functionality of a gateway, however, every packet it

receives is sniffed by the sniffer node. The packet sniffer behavior of the sniffer node sniffs every

packet incoming and outcoming packet from the router. If the special UDP packet containing the

label of a new session arrives, the packet sniffer behavior sends it to the open session behavior to

set the path for the packets storage. As long as the session is active, the packet sniffer behavior
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stores the packets on the set path. When the acknowledgment for the session’s ending arrives

in a UDP packet, then the packet sniffer behavior sends the ending order to the close session

behavior. The close session behavior cleans the memory on the router, and sends the labeled

packets to the database server node.

The remaining two nodes of the cloud architecture are the router node, which represents

the router of the cloud platform and is the accessing point for the platform itself with only one

behavior, connect to Internet. The other node is the database server node which only has the

store labeled data behavior.

A physical node which is not integrated into the cloud platform is the node for the Machine

Learning implementation. The ML implementation node has three behaviors. Firstly, it requires

the data harvest behavior to collect the data from the database server node. Upon collection,

the data harvest behavior partitions the data in two sets, one for the offline training and another

for the online testing. The filter component is first used when it receives the data for the offline

training, it uses it to form data clusters, and then sublabels them. The ML analysis behavior

selects an MLA and initiates the offline training with the sublabeled data from the filter node.

The online testing function then sends the unlabeled data to the filter node to filter data by

removing noise and labeling data that belong to clusters with well-defined flow types. The

online testing then makes predictions with the remaining data and checks the accuracy of both

the data it classified with the MLA and the data it was labeled by the filter component. Figure

5.2 the physical architecture can be observed.

5.3 Conclusions

In this chapter we presented the proposed architecture based on the system requirements analysis

defined in chapter 3. We studied the logical functions and modeled the physical requirements.

We answered the questions Which are the physical requirements for the implementation?, and

How does the physical components interact with each other?.
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Figure 5.2: Physical Architecture
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Chapter 6

Results

In this chapter we present the settings and outcome of the experiments done from the creation

of the dataset using a cloud architecture to the filtering and training processes of ML.

6.1 Platform

In our proposed solution we analyze the problem of automatic traffic flow labeling by assuming

two perspectives in the cloud environment; a PaaS model, and an IaaS model. During the first

phase of design, we worked with an IaaS virtual environment named Proxmox VE. Proxmox

VE is an open-source platform for all-inclusive enterprise virtualization that integrates KVM

(kernel-based virtual machines) hypervisor and LXC (Linux containers) [76]. In this phase of

the design, it is important to establish the computing requirements and the system capabilities.

Each virtual machine in the platform has 4GB of memory, a 1 socket and 1 core processor, and

a hard disk of 32 GB. In addition, they are running in Ubuntu 18.04.1 LTS.

The second phase of design was to structure the architecture so that it satisfied the system

requirements and became an instance of the physical architecture. By building a system through

an IaaS environment, this proposal provides a PaaS model to allow the design and implementa-

tion of diverse scenarios of human-like behavior. Therefore, the client of the platform should be
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able to develop more scenarios to enrich the quality of the data training set.

6.2 Scenarios

As defined in section 3.2, a scenario is a set of steps a client machine does to replicate human-

like behavior. In general terms, all scenarios work under the same premise: first send the label to

the router through a UDP packet, perform the scenario for a certain amount of time, and once the

timer reached its limit, stop the scenario and inform it to the router through another UDP packet.

The scenarios implemented in our solutions generate the traces for the following activities: Web

browsing, audio, and video streaming, P2P file download is done through eMule, file transfer,

VoIP and video calls, branded as “Interactive Communication”, and chat.

The web browsing scenario performs an online search through the google chrome browser

and google search engine. The streaming scenario is composed of two variants: audio and

video. For audio streaming, the scenario access either Spotify or the site EcouterRadioEn-

Ligne.com, whereas the video streaming is performed by accessing a Youtube or Twitch video.

The traces generated for file transferring were obtained through the flows generated in an SCP

request. Interactive Communication flows were sniffed by the usage of their respective activities

on Facebook. For the chat scenario, the Skype API Skpy 1 was used.

6.3 Experiments

We created a database containing the statistical information of flow records generated by Web

browsing, audio and video streaming, VoIP and video calls (labeled as Interactive Communica-

tion), and eMule P2P download. We then set four experiments: accuracy and confusion matrix

for several MLAs with both the raw dataset to determine the best MLAs for traffic classification

using the data we generated, the second experiment is the study of accuracies and confusion

1https://skpy.t.allofti.me/index.html
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matrix using the filtered and sublabeled dataset, the third experiment was to test the accuracy,

filtering and sublabeling of sessions different from the ones during the MLA training, and the

fourth experiment was meant to test the realtime classification. During the experiments, we used

the scikit-learn library [77] with the imbalance-learn package [78].

6.3.1 Dataset

With the parameters proposed in Section 4.2, we created a database containing the flow records

obtained through sniffing the communication of several virtual machines. Our dataset was com-

prised of a total of 4.7 GB. Table 6.1 shows the number of sessions per application as well as

their file size. As seen in said table, the data has a bias towards the streaming and browsing ser-

vices. If the imbalance was kept, the application with higher flow number would not allow the

propper classification of other applications, hence we balanced the data through the algorithm

proposed in [79].

Table 6.1: Captured Flows Summary
Fine-grain Coarse-grain Number of Ses-

sions
Total Size

Google browing Browsing 3,207 1.2 GB
eMule P2P 6 412 MB
Facebook Videocall Interactive Com-

munication
38 12 MB

Facebook VoIP Interactive Com-
munication

343 103 MB

SCP FT 111,759 522 MB
Twitch Streaming 3,233 856 MB
Youtube Streaming 99,024 1,001 MB
EcouterRadioEnLigne Streaming 2,522 415 MB
Spotify Streaming 1,036 148 MB

6.3.2 Test of accuracy for the balancing methods

To prevent misclassification due to strong bias, the data during training requires to be balanced.

Balancing data can be done through a manually (or randomly) selection of data, alternatively,
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it can also be obtained by a balancing method. During testing, we considered two methods:

SMOTEENN and TOMEK from the imblearn library.

Results

We trained the database with both methods and tested for accuracy using the following MLAs:

AdaBoost, Decision Tree, MLP, Naive Bayes, KNN, QDA, Random Forest, and SVM with

a RBF kernel and with a linear kernel. During the experimentation, the SVM models were

restrained to a maximum of 1000 iterations per analysis.

In terms of accuracy, the best three ML classifiers for the testing data balanced by SMO-

TEENN are Random Forest, KNN, and Decision Tree, getting 98.15%, 99.35%, and 100% of

accuracy respectively. The next best classifier in terms of accuracy is AdaBoost with an accu-

racy of 59.87%. When balanced with the TOMEK method, the best three classifiers are KNN,

Random Forest, and Decision Tree with 99.03%, 99.25%, and 100% respectively. Similarly,

with SMOTEENN, the next best classifier is AdaBoost with 59.97%. As shown in Table 6.2, the

SMOTEENN produces slightly better results than TOMEK does.

Table 6.2: Accuracy of Balancing Methods
MLA SMOTEENN TOMEK

AdaBoost 50.87% 59.97%
Decision Tree 100% 100%

MLP 19.81% 20.02%
Naive Bayes 35.72% 30.07%

KNN 99.35% 99.03%
QDA 57.76% 57.30%

Random Forest 98.15% 99.25%
SVM Linear 14.80% 20.83%
SVM RBF 49.28% 49.32%
Average 59.41% 60.08%
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6.3.3 Sublabeling and Filtering Analysis

In this experiment, we wanted to measure the impact of the filtering and sublabeling processes

on the traffic data. We performed this experiment with the following alterations to the dataset.

The first two datasets used for these tests are dataset balanced by SMOTEENN, and the dataset

balanced by TOMEK. We then created a third and a fourth dataset using the same methods with

a reduced dataset that omitted the features of the median values of the inter-arrival time and

the packet size, as well as the number of packets, this was done so to share similarities with

the realtime implementation. Finally, we also studied a dataset with full features but containing

only three flow types (internet browsing, video streaming, and P2P downloading) to represent

graphically the behavior of the filter and the sublabeling processes on observable clusters.

Results

To represent how data is filtered and after is sublabeled, we used a dataset containing only three

flow types. The clustering algorithm was able to group the data into four clusters. The first

cluster failed to obtain a label given its complex composition, the second and third clusters

showed a predominance of the Youtube flows, which allowed to qualify any flows within these

clusters as Youtube flows, and lastly, the fourth cluster did not contain any significant data, so

it was defined as noise and any flow that was set in that cluster would have been filtered out

during the filtering process. Figure 6.1 shows the data clusters before the sublabeling process

and Figure 6.2 shows the data clusters after the sublabeling process.

Table 6.3 shows the results of the filtering and sublabeling processes. The number of filtered

and sublabeled flows is small relative to the number of total flows during testing because that

the clusterization process generates groups that contain few flows. This can be seen in Figure

6.3 where most data is contained in the first two clusters.

Additionally, we confirm that, in the full feature dataset, the SMOTEENN balancing method

produces slightly more recognizable data. However, in the reduced dataset, compared to the

total number of flows, the sublabeling process trained with the SMOTEEN balanced data subla-
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Figure 6.1: Before Sublabeling Figure 6.2: After Sublabeling

Table 6.3: Filtered and Sublabeled Flows
Dataset Filtered Sublabeled

Correctly
Mistakenly
Sublabeled

Total
Flows

Full SMOTEENN 120 997 3 1,307,393
Full TOMEK 0 810 132 1,316,379
Reduced SMOTEENN 0 775 133 1,097,046
Reduced TOMEK 1,376 997 220 1,090,652

bels correctly the 0.07% of data while when trained with the TOMEK balanced data sublabels

correctly the 0.09%. The error rate for the sublabeling process shows that, with the TOMEK

data, there is an error rate of 0.02%, while with the SMOTEEN data the error rate is of 0.01%.

In short, these results show that either method produces similarly recognizable data, with SMO-

TEENN being slightly better than TOMEK. Aside from the balancing methods, these experi-

ments showed that the sublabeling process across the four datasets is able to recognize success-

fully the web browsing flows, while the major misconception it may have is to label other flows,

usually the streaming flows, like browsing.

Aside from the balancing methods, these experiments showed that the sublabeling process

across the four datasets is able to recognize successfully the web browsing flows, while the major

misconception it may have is to label other flows, usually the streaming flows, as browsing.
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Figure 6.3: Clustered data

6.3.4 Test of filter and sublabeling accuracy and confusion matrix

In addition, we also calculated the confusion matrix to complement the information of the mis-

classification. Through the confusion matrix we can visualize the performance by flow type of

the sublabeling process. The purpose of this test is to consider the accuracy of each MLA in

terms of both the general accuracy and the specific misclassifications. The need to identify these

behaviors is to determine which MLA generates the least costly errors. For instance, classifying

a file transfer flow as web browsing is not as inadequate as classifying a streaming flow as a

VoIP flow, while both are data misrepresentation, regarding QoS, the latter might represent a

heavier impact than the former.

Results

Table 6.4 shows the general accuracy of the same tasted MLAs as in the past experiments with

both the data balanced by SMOTEENN and the data balanced by TOMEK. With the confusion

matrices, the results show that the filter and sublabeling affect the overall classification of the

flows. In the SMOTEENN balanced data, flows are not filtered and the sublabeling process can

either give the label of browsing or the label of streaming, despite this, after being subjected to
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this process, some of the confusion matrices alter their information on file transfer and VoIP and

Videocalls.

Table 6.4: Accuracy of Balancing Methods
MLA SMOTEENN TOMEK

AdaBoost 95.60% 59.99%
Decision Tree 99.97% 99.98%

MLP 20.15% 20.09%
Naive Bayes 35.63% 30.06%

KNN 99.34% 99.03%
QDA 54.84% 57.21%

Random Forest 99.21% 96.81%
SVM Linear 14.87% 13.45%
SVM RBF 49.35% 49.38%
Average 63.22% 59.01%

This edit is dependant on the MLA that is being used. For instance, when using QDA, the

filter enhances the classification by reducing the confusion by 1463 flows of Videocalls and VoIP

that were previously labeled as Streaming, likewise, 929 Streaming flows were misclassified as

Videocalls and VoIP before the implementation of the filter. While the results of QDA show

an improvement over the Interactive Communication classification, the results of Naive Bayes

show the opposite, misclassifying ten Interactive Communication as Streaming.

To study the impact of the filter, and to select the optimal tool for traffic classification, we

need to analyze the result of the filter in the application of the three best classifiers, i.e., KNN,

Decision Tree, and Random Forest. In KNN, the filter improves the classification by decreasing

the number of web browsing flows misclassified as streaming, however, the filter increases the

confusion of streaming flows classifying some of them as web browsing. In Decision Tree, the

accuracy without the filter is 100%, so everything the filter sublabels will cause a decrement of

accuracy with the test data. When testing the filter with Random Forest, the filter improved the

accuracy by greatly diminishing the confusion caused by file transfer flows classified as Interac-

tive Communication, Interactive Communication classified as P2P, and streaming classified as

P2P.
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6.3.5 Online Testing

The methodology of the previous tests was based on partitioning the dataset so that 60% of the

data was used for training and 40% of the data was used for testing, however, a test is required

that determines whether the MLAs are able to classify internet flows generated by applications

which were not used in their training yet belong to the same coarse-grain definition.

To make this test, we generated new traces from an external machine and capture its flows

with a packet sniffing software, then we fed that data to the MLAs to compare their results,

every MLA was firstly trained with the SMOTEENN balanced data, and after with the TOMEK

balanced data. The traces we generated were Netflix streaming, and web browsing using Firefox

instead of Google Chrome. The MLAs chosen for this test were KNN, Decision Tree, and

Random Forest, since they have the highest accuracy among the tested MLAs.

Results

Netflix streaming generated 77 flows, which all were classified correctly by Decision Tree and

Random Forest with both SMOTEENN and TOMEK balanced data. On the other hand, when

trained with the SMOTEENN balanced data, KNN classifies two flows as file transfer, and one as

P2P, the rest is classified correctly, when trained with the TOMEK balanced data, KNN classifies

one flow as web browsing and the rest are classified correctly.

Web browsing generates a large misconception among the MLAs, which classify most of

their flows as streaming flows. This session of web browsing was comprised of 397 flows.

When trained with SMOTEENN balanced data, KNN classified three as file transfer, two as

P2P, and the rest as streaming, Decision Tree classified every flow as streaming, and Random

Forest classified 174 as Interactive Communication, and 223 as streaming.
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6.4 Conclusions

In this section we presented three different experiments to test the viability of Machine Learning

for traffic classification. We tested our method for flow sublabeling and filter to clean data. We

implemented the MLAs provided by the python library scikit-learn [77] and used them to train

a database which was balanced by the imbalance-learn package [78]. Therfore, we answered

the question Which algorithms are considered?. In addition, by implementing a PaaS model,

based on a IaaS environment, to generate ground data, we answered the question: Why is Cloud

Computing a viable solution for the lack of ground truth issue?
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Chapter 7

Conclusions

This research approached the issue in Internet traffic classification of a lack of a standardized

dataset for MLA’s training. To solve this, we proposed the question can a MLA perform Internet

traffic classification with high accuracy if its ground truth was obtained through emulated traffic

flows? Results showed that this proposal is viable for that end and can be further improved by a

sublabeling and filtering process.

In the feature clustering process, it was observed that the overall majority of the flows were

grouped in the same cluster, this could reveal that the selected features we used to train the

clustering model were not sufficient for K-means to detect classes. The other clusters contained

information about anomalous behavior which is easily identifiable by our proposed approach.

For instance, Figure 6.1 shows the initial clustering for the training flows. Cluster C0 contains

the majority of the flows, but the other three are nearly empty. Figure 6.2 shows how the anoma-

lous clusters were used to relabel the data in the third cluster identifying it as Youtube.

Future challenges include the incorporation of other scenarios, such as Voice over IP, email,

and chat. It is of great interest to implement a VPN and analyze the classification of encrypted

and tunneled data, and later for multiplexed data. Another challenge is to improve the sublabel-

ing and filtering proposal.
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Chapter 8

Appendix

8.1 Abreviations

• API. Application Programming Interface.

• ARCADIA. Architecture Analysis and Design Integrated Approach.

• CART. Classification and Regression Trees.

• DS / DiffServ. Differentiated Services

• EM. Expected Maximization.

• ENN. Edited Nearest Neighbours.

• GW. Gateway.

• HTTP. Hypertext Transfer Protocol.

• IaaS. Infrastructure as a Service.

• IEEE. Institute of Electrical and Electronics Engineers.

• Intserv. Integrated Services.
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• IP. Internet Protocol.

• IPv4. Internet Protocol version 4.

• IPv6. Internet Protocol version 6.

• ISP. Internet Service Provider.

• IT. Information Technology.

• ITU. International Telecommunication Union.

• KNN. K Nearest Neighbours.

• KVM. Kernel-Based Virtual Machines.

• LAN. Local Area Network.

• LDA. Linear Discriminant Analysis.

• LXC. Linux Containers.

• MAC. Media Access Control.

• ML. Machine Learning.

• MLA. Machine Learning Algorithm.

• MLP. Multilayer Perceptrons.

• MPLS. Multiprotocol Label Switching.

• OS. Open System.

• OSI. Open System Interconnection.

• PaaS. Platform as a Service.

• PID. Process Identifier.

• QDA. Quadratic Discriminant Analysis.
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• QoS. Quality of Service.

• RMA. Reliability, Maintainability, and Availability.

• RBF. Radial Basis Function.

• RFC. Request for Comments.

• SaaS. Software as a Service.

• SMOTE. Synthetic Minority Over-sampling Technique.

• SMOTEENN. Synthetic Minority Over-sampling Technique with Edited Nearest Neigh-

bours.

• SMTP. Simple Mail Transfer Protocol.

• SSH. Secure Shell.

• SVM. Support Vector Machines.

• TCP. Transmission Control Protocol.

• UDP. User Datagram Protocol.

• VE. Virtual Environment.

• VM. Virtual Machine.
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8.2 Appendix of Scenarios

Algorithm 7 Browsing
Require: Selenium API

1: Generate text input
2: Open Browser with Selenium
3: Search the text generated in 1 in a search engine
4: Open first five results in different tabs
5: Wait for 10 seconds
6: Close Browser

Algorithm 8 Streaming
Require: Selenium API, BeautifulSoup

1: Set a timer for a random duration
2: Generate link to video using BeautifulSoup
3: Open link generated in 2 in browser using selenium
4: while timer is not reached do
5: Stream video
6: end while
7: Close Browser

Algorithm 9 File Transfer
Require: Public and Private Key Pair

1: Send a file to another computer through SCP
2: Request a file from another computer through SCP
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Algorithm 10 P2P
Require: eDonkey, link for a file, agent’s timer

1: Request a download using file
2: Wait for 5 minutes
3: Check status on download
4: if download has finished AND agent’s timer has not run up then
5: Remove downloaded file
6: Repeat 1
7: else if agent’s timer has not run up then
8: Repeat 2
9: end if

Algorithm 11 VoIP
1: procedure CALLER(Selenium with permission to use the microphone)
2: Set a timer for a random duration
3: Open Browser with Selenium
4: Login in to Facebook
5: Open Chat
6: Call contact
7: while Phone rings do
8: Wait
9: end while

10: if Picker picked up the call then
11: Wait for a next window to pop-up
12: end if
13: Close Browser
14: end procedure
15: procedure PICKER(Selenium with permission to use the microphone)
16: Set a timer for a random duration
17: Open Browser with Selenium
18: Login in to Facebook
19: while Phone doesn’t ring do
20: Wait
21: end while
22: if Phone rings then
23: Start running 16
24: Pick up the call
25: while Timer has not run up do Wait
26: end while
27: end if
28: Close Browser
29: end procedure

74



Algorithm 12 Chat
Require: Sellenium, timer

1: Generate text input
2: Open Browser with Selenium
3: Login in to Facebook
4: Open Chat
5: while timer has not reached its limit do
6: Write the random text from 1
7: Wait for a number of seconds.
8: end while

Algorithm 13 Email
Require: Python with SMTPlib

1: Structure email
2: Send it
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