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Abstract

In this paper, a theoretical analysis of a new algorithm for measuring phase
objects (PO) is presented. The algorithm analyses images captured with a
modified Hartmann plate. The proposed method demodulates a signal with a
conic-wavefront carrier by using synchronous interferometric techniques. Typ-
ically a Hartmann Plate is a mask with an array of holes, the proposal is to
replace those holes with a series of circular concentric rings created by a conic
carrier, named Conic Hartmann Plate mask (CHM). The proposed algorithm
computes a dense correspondence between the pattern source and its interfero-
gram on the PO. This dense correspondence is computed as the phase change
of the refracted waveform with respect to the reference one. This approach
is more robust than standard techniques that computes the centroid of each
spot in order to estimate its position; which involves pattern recognition and
segmentation tasks, something normal in a typical Hartmann test. We show
in this work that the new method overcomes different problems such as irreg-
ular background illumination, spots overlapping with pupil border and spots
matching due to rapid changes on the surface slopes. This work shows a gen-
eral procedure for radial derivatives integration based on base functions. As far
as the authors know, the here presented demonstration has not been reported
before. In particular, we show that Zernike polynomials are suitable for PO.
Numerical experiments with real and simulated data demonstrate the algorithm
performance.
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1. Introduction

The use of methods that apply a mask with a series of circular equally–
spaced concentric rings is not new in optical interferometry [1, 2, 3, 4, 5]. The
combination of those kind of circular masks with others techniques such as
Moiré or shearing techniques have been developed through years [6, 7, 8, 9, 10].5

Those methods demand of computer-aided fringe pattern analysis, and in many
cases the complexity of the fringe pattern requires of sophisticated algorithms
[11, 12, 13, 14]. In addition, complex experimental setups are generally re-
quired. In this work, the experiments and numerical simulations are focused
on the analysis of optics lenses. By using a Conic Hartmann Mask (CHM) and10

the proposed algorithm, it is possible to obtain the output wavefront of a lens.
In fact, the work principle is based on the deflectometric technique, where a
CHM is deformed by the phase object and the fringe pattern is imaged by a
camera, this idea in combination with circular mask has been reported in the
past [15, 16, 17]; Figure 1 depicts the experimental setup. In this technique,15

the captured image is phase-modulated by the lens irregularities. Hence, geo-
metrical aberrations of the lens can be identified. The phase-modulated pattern
allows the estimation of the radial slope of the lens with respect to its closest
sphere. In the traditional Hartmann test, the accuracy of the curvature estima-
tion is a function of the number of spots identified over the object. To increase20

the number of estimated slope-points some authors have proposed more com-
plicated radial symmetric pattern masks [18, 19, 20]. In contrast, synchronous
interferometric methods used in optical metrology provide a dense phase esti-
mation (i.e., at every pixel of the fringe pattern domain) [21]. Interferogram
analysis implies a demodulation process of the recorded information, where each25

interferogram needs its own specific reference carrier for an appropriate demod-
ulation; for example, linear demodulation uses a plane-wavefront (carrier) as
reference [22]. This paper presents a new digital interferometric method for
interferogram demodulation which uses conic-carrier. Additionally, we propose,
a general, basis–function based procedure for recovering smooth wavefronts (ex-30

empt for a constant term) from radial derivative. As far as the authors known,
the here presented demonstration has not been reported before. As example, we
show that Zernike Polynomials can properly be used for this integration task.
The performance of the method is demonstrated by numerical experimental
results.35

2. Synchronous demodulation of modulated interferograms with equal-

spaced concentric rings

In this work we assume that our Conic Hartmann Mask (CHM) has a con-
tinuous cosine (radial) transmittance profile. Thus, let P be the observed fringe
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Figure 1: Schema of the experimental setup for Conic Hartmann Mask (CHM): conic carrier
Hartmann mask (H), test lens (L) and camera (C).

(CHM) pattern and let x = [x1, x2]
T be the image pixel coordinates with number

of rows M and number of columns N . Hence, by assuming the fringe–pattern
origin is the image central–pixel x0 = [x0

1, x
0
2]

T , the transformation of x to polar
coordinates (ρ, θ) is given by the Euclidean distance (radio),

ρ =
‖x− x0‖2

1
2
min{M,N} , (1)

and the angular position, θ = ∠(x− x0). Therefore, the model of CHM in polar
coordinates is

CHM(ρ, θ) = 1 + cos (ω0ρ) , (2)

where ω0 = 2πκ is the spatial frequency and κ is the number of fringes into the40

interval ρ ∈ [0, 1]. The CHM in Eq. (2) is phase-modulated by a test–subject
with slope changes corresponding to the physical variable of interest; such as
wavefront aberrations. The resulted phase-modulated CHM image is modelled
by:

I(ρ, θ) = a(ρ, θ) + b(ρ, θ) cos (ω0ρ+ s φρ) ; (3)

where, a(·, ·) is the background illumination, b(·, ·) is the contrast, s is a scale
value that depends on the experimental geometry and

φρ(ρ, θ)
def
=

∂φ(ρ, θ)

∂ρ
, (4)

is the partial derivative of the output wavefront φ, with respect to (w.r.t.) the45

radial position ρ, [23, 24, 25, 26]. In the literature, φρ is named the radial-

slope. Next, we present our proposal of a synchronous detection algorithm with
conic carrier to computing an estimation of φρ and, after, we present the radial
integration procedure. A preliminary version of this demodulation step was
reported in [27].50

First, we multiply Eq. (3) by the complex conic-wavefront reference, exp (−ıω0ρ).
This reference pattern has the same spatial frequency and its circular fringes
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center matches the center of the CHM image I. Therefore, by decomposing the
cosine signal in two complex exponentials, we obtain:

I(ρ, θ) exp (−ıω0ρ) = a(ρ, θ) exp (−ıω0ρ) (5)

+
1

2
b(ρ, θ) exp [−ı(2ω0ρ+ s φρ(ρ, θ))] (6)

+
1

2
b(ρ, θ) exp [−ıs φρ(ρ, θ)] . (7)

We can observe that the three terms in the right side of Eqs. (5) to (7) can be55

understood as follows. The analytic signal of the conic-wavefront (Eq. (5)), cor-
responds to a ring in Fourier space with radius ω0 convolved with the spectrum
of the low frequency pattern background, a; see Figure 2. The analytic signal
of the conic-wavefront with twice the reference carrier (Eq. (6)) corresponds in
the Fourier space to a ring with radius 2ω0 convolved with the spectrum of the60

low frequency pattern contrast, b; see Figure 2. The complex exponent of the
desired analytical signal is represented in the Fourier space by a central spot,
which phase component contains the desired information φρ; see Figure 2.

We note from Figure 2 that φρ can be estimated by means of a low pass
filtering process which preserves the central lobule. We denote by L a low-65

pass filter that rejects the two high frequency terms associated with the conic
wavefronts Eqs. (5) and (6); i.e.,

Ĩ(ρ, θ) = L [I(ρ, θ) exp (−ıω0ρ)]

=
1

2
b(ρ, θ) exp [−ıs φρ(ρ, θ)] , (8)

where Ĩ denotes the filtered CHM modulated pattern. The proposed demodu-
lation algorithm, for CHM images, is based on Eq. (8). The algorithm is only
restricted by the capability of having a well defined separation base-band in the70

analytical signal expressed by Eqs. (5) to (7) [28]. Then, an estimation of the

radial slope-value φ̂ρ for each pixel can be calculated as:

φ̂ρ(ρ, θ) =
1

s
arg[Ĩ(ρ, θ)], (9)

where the function arg(x+ ıy) : C → [−π, π) computes the phase of a complex
number: the computed phase is wrapped.

Different from standard Hartmann test analysis, which is based on image75

intensity, the proposed algorithm computes a dense (at each pixel) estimation
of the radial–slope from Eq. (9).

3. Base functions for spatial integration of radial slope fields

Any continuous smooth two–dimensional (2D) function can be expressed as
lineal combination of smooth based functions; for example, we can use Zernike
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Figure 2: Block diagram of the proposed demodulation algorithm for CHM images by using
digital interferometry. A real lens is used as the object under test which is modulated by using
a CHM. As it is explained in this section, the frequency spectrum decomposition (using Fourier
Transform F [�]) allows the application of a low pass-filter in order to obtain an estimation
of the wrapped phase (W [�]). After this, an unwrapping process is computed followed by the
integration scheme based on the use of Zernike polynomials.

polynomials for functions defined within the unit circle [29]. In particular, the
smooth radial derivative, φρ, can be expressed as the sum of smooth basis
functions, in polar coordinates, as:

φρ(ρ, θ) =

n
∑

j=1

ajΨj(ρ, θ) ; (10)

for ρ ∈ [0, 1], θ ∈ [0, 2π) and n sufficiently large. By abusing of the notation,
this formula can be written in matrix form as φρ = Ψa, where φρ denotes, now,80

a column vector of length equal MN, Ψ = [Ψj ]j=1,2,...,n and the column vector
Ψj ∈ RMN denotes the discretisation of the jth basis function.

One advantage of the dense and regular radial derivative φρ is that the num-
ber MN of samples (pixels) in the unitary circle is large and equally–spaced.
Since one can not guarantee orthogonality on a discretisation of continuos or-
thogonal base functions, we estimate the a coefficients with a least squares
procedure:

ã = argmina ‖Ψa− φρ‖22 . (11)

Once we compute a, we can be obtain φ by the definite integral of Eq. (10):

φ(ρ, θ) =

∫ ρ

0

φρ(r, θ) dr = C(0, θ) +

n
∑

j=1

ajΨ̂j(ρ, θ) ; (12)

where, by continuity, C(0, θ) = C independently of the angle θ. This constant C
is a piston term that can be neglected because it does not affect the phase shape.
Moreover, the columns of Ψ̂ = [Ψ̂j]j=1,2,...,N denote the analytical integrals of
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the corresponding (Zernike) base functions:

Ψ̂j(ρ, θ) =

∫

Ψj(ρ, θ) dρ. (13)

We can write Eq. (12) in matrix form:

φ̃ = Ψ̂ã; (14)

where φ̃ is the final estimation of the phase φ. Eqs. (11) and (14) resume the
radial integration procedure.

4. Experiments of Phase Demodulation85

The algorithm presented in this paper estimates the elevation deviation of
the tested surface respect to a sphere. The technique’s performance is demon-
strated with a real lens and numerical simulations. Figure 3(a) shows the origi-
nal CHM pattern, before passing through the lens. Figure 3(b) shows the image
of the same CHM modulated by the lens, after passing through the lens. Fig-90

ure 3(c) shows the magnitude of theFourier Spectra Transform of Figure 3(b)
after applying Eq. (8).

(a) (b) (c)

Figure 3: (a) Original CHM pattern made of on a set of equally spaced rings. (b) Phase-
Modulated CHM pattern by the lens. Here a phase variations produced by the lens surface is
observed as a deformation of the rings. (c) Fourier Spectrum of the Phase-Modulated CHM
pattern.

By the use of the interferometric demodulation algorithm proposed in this pa-
per, the two conjugate spectra are well base–band separated, as it can be
seen in Figure 3(c). The brightly central spot represents the analytic signal:95

b(ρ, θ) exp [−ıs φρ(ρ, θ)]. The two other rings surrounded this central spot cor-
respond to the terms expressed by Eqs. (5) and (6), as it is presented in Eqs.
(5) to (7). We compare the performance of our method with the newest one re-
ported in [11]. Figures 4(a) to 4(c) show the results of applying the Variational
method and the proposed one.100

As it can be noted, the computed result with the Variational method still
has contributions of the conic-carrier; i.e., some low-contrast rings are presented
in the reconstructed wavefront. The carrier used in the CHM algorithm is a
synthetic estimation of the original.
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(a) (b) (c)

Figure 4: (a) CHM Phase-Modulated CHM pattern by the lens: the phase variations produced
by the lens surface produce rings distortions. (b) Analysis of the output wavefront with the
variational method. (c) Analysis of the output wavefront with the CHM method.

Error in the estimation of the fringes center and their spatial frequency105

may introduce an error in the estimated phase. For this reason, we compute
the center coordinates as the mass center of the section that contains the first
radial ring. We also determine the fringe number by simple inspection of the
image. Two numerical experiments, using a reference sphere, were performed
in order to estimate errors due to a miscalculation in the number of fringes and110

the center position of the synthetic carrier used for synchronous demodulation.
The numerical simulation let to know the exact position of the center of the
CHM, from this position, the synthetic conic carrier was translated six pixels
in the x and y image coordinate system, after this the Mean Square Error
(MSE) is computed. The results can be observed in Figure 5(a). The number of115

fringes can be set in the CHM as a known value for the numerical experiment,
variations from less than 5 fringe to more than 5 fringe from the original value are
introduced for the construction of the synthetic conic carrier, for each synthetic
conic carrier with its own number of fringes, the MSE is computed. The results
can be observed in Figure 5(b).120

(a) Center position vs. MSE (b) Fringe number vs. MSE

Figure 5: Error in the estimated phase produced by wrong estimations of the center position
or the fringe number.

In order to validate the proposed method, seven numerical experiments were
carried out. For all the experiments presented here, the number Zernike poly-
nomials used was fixed to 100. The result of the integration process gives the
output wavefront. The first four experiments are based on the functions pre-
viously reported by Trevino et. al. [30]. The last three test wavefronts are125
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generated by Zernike polynomial compositions. The explicit functions are:

φ1(ρ, θ) = exp

[

−0.09− 0.6ρ cos(θ) + 0.01− 0.2ρ sin(θ) + ρ2

0.18

]

, (15)

φ2(ρ, θ) = exp

[

− (ρ− 0.54)2

0.04

]

, (16)

φ3(ρ, θ) = exp

[

−
(

θ − 0.55

3

)10
]

φ2(ρ, θ), (17)

φ4(ρ, θ) = ρ5 exp

[

−
(

5ρ

4

)2
]

, (18)

φ5(ρ, θ) = r2 cos(θ), (19)

φ6(ρ, θ) =
√
2
(

2r2 + r
(

2r2
(

2
(

5r2 − 6
)

sin(θ) + cos(3θ)
)

+
√
5
(

15r4 − 20r2 + 6
)

r cos(2θ) + 6 sin(θ)
)

− 1
)

+

2r cos(θ), (20)

φ7(ρ, θ) = r
(√

6
(

3r2 − 2
)

sin(θ) + 2
√
2
(

10r4 − 12r2 + 3
)

cos(θ)+

2 sin(θ)) . (21)

The functions Eqs. (15) to (21) were tested by using a simulation of the
Hartmann test, the variational method proposed by Legarda et. al [11] and
the proposed method. The results are shown in Figure 6. We use the MSE for
comparing the quality of the method, see results in Table 1.130

Computed MSE for the tested surface (×10−2)
METHOD φ1 φ2 φ3 φ4 φ5 φ6 φ7

H 13.25 17.67 19.28 14.57 7.58 11.55 13.47
V 7.18 0.53 1.52 0.03 0.42 1.32 3.22
P 0.43 1.12 0.88 0.30 0.36 0.22 1.05

Table 1: MSE of the recovered phases with Hartmann (H), Variational (V) and proposed (P)
methods using the test functions in Eqs. (15) to (21); best result remarked in bold.

Figure 6 presents the results of the three different phase recovering method
using the test functions in Eqs. (15) to (21). The Variational (V) method
and the proposed (P) here, offer the best approach to the original function.
In contrast, the Hartmann (H) test is more robust than the Variational when
notorious changes in θ are present. This is why the MSE is lower in the CHM135

technique. On other hand, when the test object is a flat surface, or more specific,
when the angular-derivative component of the object under test is small, the
Variational method has the lower MSE. This behavior is due the assumption of
the Variational method that assumes that changes in θ tend to zero. Although
variants of our approach has been discussed by previous works [32, 33, 34], in140

the best of our knowledge, this is the first time that a proof of the correctness
of the integration procedure is presented.
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φ1 φ2 φ3 φ4 φ5 φ6 φ7

Figure 6: First row: test functions defined in Eqs. (15) to (21). Reconstructions computed
with Hartmann test (second row), Variational method (third row) and proposed method (last
row).

5. Conclusions

We present a new synchronous digital interferometric method for phase-
demodulation of concentric-rings images. Our method is based on the use of a145

conic–carrier reference to demodulate CHM image pattern. The result of this
phase demodulation corresponds to the wavefront estimation of the phase object
under study. A major advantage of our method is that we use the information
provides by all the pixels in the image, in contrast to the Hartmann test in which
the results are supported by a sparse point-set. We show that an estimation of150

the CHMmodulated waveform in the Fourier space, can be obtained through the
densely computed radial slope, φρ. A special focus of the sensibility on radial-
slope detection depends on the accuracy of the conic-carrier center position.
An inadequate selection of its central position derive in fake estimation of the
corneal radial-slope. In other hand, the number of fringes in the conic carrier155

affects the assessment of the slope by adding a cone. Given that any lens
surface is expected to be smooth, the lens wavefront is computed by fitting a
set of base function to the radial derivative.As example, in our experiments,
we use discretized Zernike polynomials. Then, te computed mixture coefficients
can be used to compute the radial integration.160

It is important to remark that, the main contribution of this paper is to
present a new approach for analysing images based on the use of a CHM and
the redial integration procedure. We note that the calibration procedure is out
the scope this work, and it is intended as a future work.
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[2] Z. Bin, “Digital Moiré Fringe-Scanning Method for Centering a Circular
Fringe Image,” Appl. Opt. 43(14), 2833-2839 (2004).

[3] Hongyan Zhang, Cheng Wang, Xuemei Liu and Chunguang Liu, “Phase-
shifting method for circular grating moire technique,” Proc. SPIE 4231,
Advanced Optical Manufacturing and Testing Technology 2000, 603 (Oc-175

tober 6, 2000).

[4] M. Thakur, A. Vyas, and C. Shakher, “Measurement of Temperature Pro-
file of a Gaseous Flame with a Lau Phase Interferometer that has Circular
Gratings,” Appl. Opt. 41(4), 654-657 (2002).

[5] C. Shakher and A. Daniel, “Talbot interferometer with circular gratings for180

the measurement of temperature in axisymmetric gaseous flames,” Appl.
Opt. 33(25), 6068-6072 (1994).

[6] D. Silva, “Talbot Interferometer for Radial and Lateral Derivatives,” Appl.
Opt. 11(11), 2613-2624 (1972).

[7] Y. Nakano and K. Murata, “Measurements of phase objects using the Tal-185

bot effect and moiré techniques,” Appl. Opt. 23(14), 2296-2299 (1984).

[8] C. Shakher, S. Prakash, D. Nand, and R. Kumar,“Collimation Testing with
Circular Gratings,” Appl. Opt. 40(8), 1175-1179 (2001).

[9] N. Gu, L. Huang, Z. Yang, and C. Rao, “A single-shot common-path phase-
stepping radial shearing interferometer for wavefront measurements,” Opt.190

Express 19(5), 4703-4713 (2011).

[10] J. Wang, Y. Song, Z. Li, and A. He, “Two-step spatial phase-shifting radial
shearing interferometery with circular gratings,” Opt. Lett. 38(7), 1116-
1118 (2013).

[11] Ricardo Legarda-Saenz, Carlos Brito-Loeza, Mariano Rivera, Arturo195

Espinosa-Romero, “Variational method for integrating radial gradient
field”, Optics and Lasers in Engineering, 63, 53-57 (2014).

[12] Bo Li, Lei Chen, Jiang Bian and Yan Li, “A demodulation method for the
circular carrier interferogram using phase stitching,” Optics and Lasers in
Engineering, 49(9), 1118-1123 (2011).200

10



[13] X. Meng, X. Peng, L. Cai, A. Li, J. Guo, and Y. Wang,“Wavefront recon-
struction and three-dimensional shape measurement by two-step dc-term-
suppressed phase-shifted intensities,” Opt. Lett. 34(8), 1210-1212 (2009).

[14] M. Trusiak, K. Patorski, and K. Pokorski, ”Hilbert-Huang processing
for single-exposure two-dimensional grating interferometry,” Opt. Express205

21(23), 28359-28379 (2013).

[15] J. Massig, “Measurement of phase objects by simple means” Appl. Opt.
38, 4103-4105 (1999).

[16] Y. Mej́ıa and D. Malacara, “A review of methods for measuring corneal
topography,” Optometry and vision science, 78(4), 240-253 (2001).210

[17] O. A. Skydan, M. J. Lalor and D. R. Burton, “3D shape measurement of
automotive glass by using a fringe reflection technique,” Meas. Sci. Technol.
18, 106-114 (2007).

[18] E. J. Sarver, US Patent No. 7,938,537 (22 June 2010).

[19] T.N. Turner, G. D. Niven, J. R. Bentley, E. J. Sarver and C. R. Broadus,215

US Patent No. 5,864,383 (24 April 1997).

[20] D. Malacara-Doblado and I. Ghozeil, “Hartmann, Hartmann-Shack, and
Other Screen Tests,” in Optical Shop Testing, 3rd ed., D. Malacara ed.,
John Wiley & Sons, Inc. (2007).

[21] D. Malacara-Doblado, K. Creath, J. Schmit, and J. C. Wyant, “Testing220

of aspheric wavefronts and surfaces,” in Optical Shop Testing 3rd ed., D.
Malacara, ed., (Wiley, 2007) 435-497.

[22] M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-
pattern analysis for computer based topography and interferometry,” J.
Opt. Soc. Am, 72, 156-160 (1982).225

[23] Yukinobu Ban, US Patent No. 6,382,796 B1 (5 June 2000).

[24] D. C. Grove, US Patent No. 7,219,996 B2 (22 May 2007).

[25] L. A. Carvalho and J. C. Castro, “The Placido wavefront sensor and prelim-
inary measurement on a mechanical eye,” Optometry and Vision Science,
83, 108-118 (2006).230

[26] L.A. Carvalho, “Absolute accuracy of Placido-based videokeratographs to
measure the optical aberrations of the cornea,” Optom Vis Sci. 81(8), 616-
628 (2004).

[27] M. Servin, “Synchronous phase-demodulation of concentric-rings Placido
mires in corneal topography and wavefront aberrometry (theoretical con-235

siderations),” ArXiv e-prints, 1204.1950 (2012).

11



[28] D. Malacara, M. Servin, and Z. Malacara, Interferogram analysis for Opti-
cal Testing, 2nd ed., CRC Press, Taylor and Francis Group, (2005).

[29] D. Malacara (Ed.). Optical shop testing, 2nd edn, Wiley, New York, 1992,
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