

A DESCRIPTION OF A DRINFELD MODULE WITH CLASS NUMBER h = 1 AND RANK 1

Victor Bautista-Ancona¹, Javier Diaz-Vargas¹, José Alejandro Lara Rodríguez¹ and Francisco X. Portillo-Bobadilla²

¹Universidad Autónoma de Yucatán

México

²Universidad Autónoma de la Ciudad de México México

Abstract

We work out in detail the Drinfeld module over the ring

$$A = \mathbb{F}_2[x, y]/(y^2 + y = x^3 + x + 1).$$

The example in question is one of the four examples that come from quadratic imaginary fields with class number h = 1 and rank one.

We develop specific formulas for the coefficients d_k and ℓ_k of the exponential and logarithmic functions and relate them with the product D_k of all monic elements of A of degree k. On the Carlitz module, D_k and d_k coincide, but this is not true for general Drinfeld modules. On this example, we obtain a formula relating both invariants. We prove also using elementary methods a theorem due to Thakur that relate two different combinatorial symbols important in the analysis of solitons.

Received: July 4, 2017; Revised: August 5, 2017; Accepted: August 22, 2017 2010 Mathematics Subject Classification: 11G09.

Keywords and phrases: Drinfeld module, exponential and logarithmic functions.

1. Introduction

Let \mathbb{F}_q be a finite field of characteristic p and K be a function field over \mathbb{F}_q . After we choose ∞ , a fixed infinite place of K, let A be the ring of regular functions outside of ∞ and let K_{∞} be its completion. Now take \mathbb{C}_{∞} to be the completion of an algebraic closure of K_{∞} .

Let $\mathbb{C}_{\infty}{\{\tau\}}$ be the ring of *twisted polynomials*, i.e., the noncommutative ring of polynomials $\sum a_i \tau^i$ with coefficients in \mathbb{C}_{∞} such that $\tau z = z^q \tau$. A twisted polynomial $f = a_0 + a_1 \tau + \dots + a_d \tau^d \in \mathbb{C}_{\infty}{\{\tau\}}$ is identified with the \mathbb{F}_q -linear endomorphism of \mathbb{C}_{∞} ,

$$z \mapsto f(z) = a_0 z + a_1 z^q + \dots + a_d z^{q^d}$$
.

A Drinfeld A-module is an \mathbb{F}_q -algebra homomorphism $\rho : A \to \mathbb{C}_{\infty} \{\tau\}$ injective, for which $\rho(a) = a\tau^0$ + higher order terms in τ . The action $a \cdot z = \rho(a)(z)$ of A in \mathbb{C}_{∞} makes \mathbb{C}_{∞} into an A-module, and hence the name "Drinfeld module".

For each Drinfeld module ρ we associate an exponential entire function *e* defined by a power series

$$e(z) = \sum_{i=0}^{\infty} \frac{z^{q^i}}{d_i}$$
 for all $z \in \mathbb{C}_{\infty}$

This exponential function satisfies the following fundamental functional equation:

$$e(az) = \rho_a(e(z)), \tag{1}$$

for $z \in \mathbb{C}_{\infty}$ and $a \in A$, where ρ_a stands for $\rho(a)$.

The Carlitz module, defined by Carlitz [1] in 1935, is given by the \mathbb{F}_q -algebra homomorphism $C : \mathbb{F}_q[t] \to \mathbb{C}_{\infty}\{\tau\}$ determined by $C_t = t + \tau^q$.

1005

Equation (1) produces $e(tz) = te(z) + e(z)^q$. It follows that

$$\sum_{i=0}^{\infty} \frac{(t^{q^i} - t)z^{q^i}}{d_i} = \sum_{i=0}^{\infty} \frac{z^{q^{i+1}}}{d_i^q}.$$

By equating coefficients we get a unique solution $d_n = [n]d_{n-1}^q$, where $[n] = (t^{q^n} - t)$ and $d_0 = 1$. Therefore, $d_n = [n][n-1]^q \cdots [1]^{q^{n-1}}$ and it is easily seen that d_n is the product of all monic polynomials of degree n.

Since e(z) is periodic, it cannot have a global inverse, but we may formally derive an inverse $\log(z)$ for e(z) as a power series around the origin. By definition $e(\log(z)) = z$. Since e(z) satisfies the functional equation $e(tz) = te(z) + e(z)^q$, it follows that $tz = \log(te(z)) + \log(e(z)^q)$. Replacing $\log(z)$ for z we obtain $t \log(z) = \log(tz) + \log(z^q)$. Let $\log(z) = \sum z^{q^i} / \ell_i$. Then

$$\sum_{i=0}^{\infty} \frac{(t-t^{q^i}) \cdot z^{q^i}}{\ell_i} = \sum_{i=0}^{\infty} \frac{z^{q^{i+1}}}{\ell_i}.$$

It follows that $\ell_{i+1} = -[i+1]\ell_i$. Therefore $\ell_i = (-1)^i [i][i-1]\cdots[1]$.

We follow the ideas developed in the Carlitz module case, but applied to the Drinfeld module over $A = \mathbb{F}_2[x, y]/(y^2 + y = x^3 + x + 1)$. We explore specific ways to understand the mentioned example, which is one of four examples provided from imaginary quadratic fields with class number h = 1[4] and rank 1. The formulas obtained are compared with Theorem 4.15.4 of [5] and are related to solitons, as exposed in Chapter 8 of the same reference, and Theorem 3 of the article [6].

2. Action of the Drinfeld Module on the Variables x and y

In our example, we have $d_{\infty} = 1$, $v_{\infty}(x) = -2$, $v_{\infty}(y) = -3$, and using

that $\deg(a) = -v_{\infty}(a)d_{\infty}$, $\forall a \in A$, it follows that $\deg(x) = 2$ and $\deg(y) = 3$.

Based on it, the Drinfeld module ρ that we are considering has rank 1 and is determined by its values in *x* and *y* (actually, it is enough to know its value in one element $a \in A$, see 2.5 in [5]). According to the aforementioned degrees and that the unique sign in our example is +1, we obtained that

$$\rho_x = x + x_1 \tau + \tau^2,$$

$$\rho_y = y + y_1 \tau + y_2 \tau^2 + \tau^3$$

with $x_1, y_1, y_2 \in A$. Now, using the commutative property of the Drinfeld module $\rho_x \rho_y = \rho_y \rho_x$ and equating on degree 1, we get

$$x_1(y^2 + y) = y_1(x^2 + x).$$

Next, using the equation on the curve $y^2 + y = x^3 + x + 1$ and dividing, we obtain

$$y_1 = x_1 \left(x + 1 + \frac{1}{x^2 + x} \right).$$

This implies that $x^2 + x | x_1$ and $y^2 + y | y_1$. Assuming that $x_1 = x^2 + x$, it is also obtained that $y_1 = y^2 + y$. Now, equating on degree 2, one has the equation

$$(x^{4} + x)y_{2} = -y_{1}x_{1}^{2} + y_{1}^{2}x_{1} + (y^{4} + y).$$
⁽²⁾

But, we can use the identities

$$y^{4} + y = (y^{2} + y)^{2} + y^{2} + y$$
$$= (y^{2} + y)(y^{2} + y + 1)$$
$$= (y^{2} + y)(x^{3} + x)$$
$$= (y^{2} + y)(x^{2} + x)(x + 1)$$

1007

and

$$x^{4} + x = (x^{2} + x)(x^{2} + x + 1).$$

So dividing the equation (2) by $x_1 = x^2 + x$, and substituting the values x_1 and y_1 , we get

$$y_2(x^2 + x + 1) = (y^2 + y)(x^2 + x + y^2 + y) + (y^2 + y)(x + 1)$$
$$= (y^2 + y)(y^2 + y + x^2 + 1)$$
$$= (y^2 + y)(x^3 + x^2 + x).$$

Thus, clearing $x^2 + x + 1$, we have $y_2 = x(y^2 + y)$, as it is known in the literature [3, Example 11.3].

3. Exponential and Logarithm Coefficients

We find recursive formulas for the coefficients of both the exponential e(z) and the logarithmic log(z) functions associated to the Drinfeld module from Section 2.

Write

$$e(z) = \sum_{i=0}^{\infty} \frac{z^{2^{i}}}{d_{i}} = \sum_{i=0}^{\infty} a_{i} z^{2^{i}}$$

and

$$\log(z) = \sum_{i=0}^{\infty} \frac{z^{2^{i}}}{\ell_{i}} = \sum_{i=0}^{\infty} b_{i} z^{2^{i}},$$

where $a_i = d_i^{-1}$ and $b_i = \ell_i^{-1}$. Using that

$$e(xz) = \rho_x(e(z))$$

= $xe(z) + [1]_x e^2(z) + e^4(z),$

where $[1]_x = x^2 + x$. Then, expanding both sides of the equality:

$$e(xz) + xe(z) = [1]_x e^2(z) + e^4(z),$$

we have on the left side:

$$e(xz) + xe(z) = \sum_{j=0}^{\infty} (x^{2^{j}} + x)a_{j}z^{2^{j}}$$
$$= \sum_{j=0}^{\infty} [j]_{x}a_{j}z^{2^{j}}$$
$$= [1]_{x}a_{1}z^{2} + \sum_{j=2}^{\infty} [j]_{x}a_{j}z^{2^{j}}, \qquad (3)$$

where $[j]_x := x^{2^j} + x$. Now, expanding the right side, we get:

$$[1]_{x}e^{2}(z) + e^{4}(z) = [1]_{x}\sum_{i=0}^{\infty}a_{i}^{2}z^{2^{i+1}} + \sum_{i=0}^{\infty}a_{i}^{4}z^{2^{i+2}}$$

By setting j = i + 1 in the first sum, and j = i + 2 in the second sum, we obtain:

$$[1]_{x}e^{2}(z) + e^{4}(z) = [1]_{x}\sum_{j=1}^{\infty}a_{j-1}^{2}z^{2^{j}} + \sum_{j=2}^{\infty}a_{j-2}^{4}z^{2^{j}}$$
$$= [1]_{x}a_{0}^{2}z^{2} + \sum_{j=2}^{\infty}([1]_{x}a_{j-1}^{2} + a_{j-2}^{4})z^{2^{j}}.$$
 (4)

Comparing equations (3) and (4), recursive formulas are obtained

$$a_{1} = a_{0}^{2},$$

$$a_{j} = \frac{[1]_{x}a_{j-1}^{2} + a_{j-2}^{4}}{[j]_{x}} \text{ for } j \ge 2.$$
(5)

Subsequently, we assume that $a_0 = 1$, i.e., the exponential is normalized. Notice that if we do not normalize the coefficients, the exponential function varies by a factor given by the initial term. If we denote $e(z, a_0)$ to this exponential function, it is easy to see that

$$e(z, a_0) = a_0 e(z),$$
 (6)

where e(z) is the normalized exponential.

Now, in terms of the d_j 's (assuming also, the normalization of the exponential), the recursive formula is as follows:

$$d_{1} = d_{0}^{2} = 1,$$

$$d_{j} = \frac{[j]_{x}d_{j-1}^{2}d_{j-2}^{4}}{[1]_{x}d_{j-2}^{4} + d_{j-1}^{2}} \text{ for } j \ge 2.$$
(7)

Similarly, for the logarithm function, we have that

$$x \log(z) = \log(\rho_x(z))$$

= $\log(xz + [1]_x z^2 + z^4)$
= $\log(xz) + \log([1]_x z^2) + \log(z^4)$,

from which it follows that

$$x \log(z) + \log(xz) = \log([1]_x z^2) + \log(z^4).$$

So, we expanded the left side to

$$x \log(z) + \log(xz) = \sum_{j=0}^{\infty} (x^{2^{j}} + x) b_{j} z^{2^{j}}$$
$$= \sum_{j=1}^{\infty} [j]_{x} b_{j} z^{2^{j}}.$$
(8)

Note that $[0]_x = 0$. The right side must be

$$\log([1]_{x}z^{2}) + \log(z^{4}) = \sum_{i=0}^{\infty} [1]_{x}^{2^{i}} b_{i}z^{2^{i+1}} + \sum_{i=0}^{\infty} b_{i}z^{2^{i+2}}.$$

Again, by setting j = i + 1 in the first sum, and j = i + 2 in the second sum, we obtain

$$\log([1]_{x}z^{2}) + \log(z^{4}) = [1]_{x}b_{1}z^{2} + \sum_{j=2}^{\infty}([1]_{x}^{2^{j-1}}b_{j-1} + b_{j-2})z^{2^{j}}.$$
 (9)

Comparing the terms in the equations (8) and (9), we obtain the recursive formulas:

$$b_{1} = b_{0},$$

$$b_{j} = \frac{[1]_{x}^{2^{j-1}} b_{j-1} + b_{j-2}}{[j]_{x}} \text{ for } j \ge 2.$$
(10)

Now again, if $\log(z, b_0)$ is the logarithmic function with initial term b_0 , and $\log(z) = \log(z, 1)$ is the normalized logarithm, by the recursion formula, we deduce the relation:

$$\log(z, b_0) = b_0 \log(z).$$
(11)

In terms of values ℓ_i 's, the recursions are as follows:

$$\ell_1 = \ell_0,$$

$$\ell_j = \frac{[j]_x \ell_{j-1} \ell_{j-2}}{[1]_x^{2^{j-1}} \ell_{j-2} + \ell_{j-1}} \text{ for } j \ge 2.$$

4. Formulæ for Computing ρ_a

The first formula is recursive and is in the spirit of Proposition 3.3.10 in [2].

Assume that $\rho_a = \sum_{k=0}^{d} \rho_{a,k} \tau^k$ with $d = \deg(a)$. We will use again commutativity $\rho_x \rho_a = \rho_a \rho_x$ and the explicit expression: $\rho_x = x + [1]_x \tau + \tau^2$. Then, multiplying

$$\rho_x \rho_a = (x + [1]_x \tau + \tau^2) \left(\sum_{k=0}^d \rho_{a,k} \tau^k \right)$$
$$= \sum_{k=0}^d (x \rho_{a,k} \tau^k + [1]_x \rho_{a,k}^2 \tau^{k+1} + \rho_{a,k}^4 \tau^{k+2})$$

and multiplying

$$\rho_a \rho_x = \left(\sum_{k=0}^d \rho_{a,k} \tau^k\right) (x + [1]_x \tau + \tau^2)$$
$$= \sum_{k=0}^d (x^{2^k} \rho_{a,k} \tau^k + [1]_x^{2^k} \rho_{a,k} \tau^{k+1} + \rho_{a,k} \tau^{k+2}).$$

By comparing terms a recursive formula is obtained

$$\rho_{a,0} = a \qquad \text{(first term in recursion),}
\rho_{a,1} = a^2 + a \qquad \text{(comparing degree } k = 1\text{),}
\rho_{a,k} = \frac{[1]_x^{2^{k-1}} \rho_{a,k-1} + \rho_{a,k-2}}{[k]_x} + \frac{[1]_x \rho_{a,k-1}^2 + \rho_{a,k-2}^4}{[k]_x}, \text{ for } k \ge 0$$

Note the similarity to the recursive formulas for a_j 's and b_j 's in the previous section, equations (5) and (10). The same phenomenon occurs in the Carlitz module, but in such a case, there is only a single summand.

2.

Another way to calculate ρ_a , is based on the use of the exponential and the logarithm functions and their formal development as power series. We know that Victor Bautista-Ancona et al.

$$e(a\log(z)) = \rho_a(e(\log(z))) = \rho_a(z).$$

Using power series as in the previous section, we get to

$$\rho_a(z) = \sum_{k=0}^{\infty} \left(\sum_{j=0}^k a_j b_{k-j}^{2^j} a^{2^j} \right) z^{2^k}$$
$$= \sum_{k=0}^{\infty} \left(\sum_{j=0}^k \frac{a^{2^j}}{d_j \ell_{k-j}^{2^j}} \right) z^{2^k}.$$

The combinatorial terms in the sum, are the ones that Thakur used to develop his alternative perspective on solitons [6].

We introduce the following notation used hereafter:

$$p_k(w) \coloneqq \begin{cases} w \\ q^k \end{cases} \coloneqq \sum_{j=0}^k \frac{w^{2^j}}{d_j \ell_{k-j}^{2^j}}.$$

Hence, since $\rho_a = \sum \rho_{a,k} \tau^k$ is a monic polynomial in τ of degree deg(a), we have that $p_k(a) = 0$ if deg(a) < k; and $p_k(a) = 1$ if deg(a) = k.

5. Comparing the Polynomials $p_k(w)$ and $e_k(w)$

Define the following sets:

$$A_{
$$A_k := \{a \in A : \deg(a) = k\}$$$$

and the polynomial

$$e_k(w) = \prod_{a \in A_{< k}} (w + a).$$

Clearly, by the last paragraph in the previous Section 4, every $a \in A_{< k}$ is a root of $p_k(w)$. Thus,

A Description of a Drinfeld Module ... 1013

$$R_k(w) \coloneqq \frac{p_k(w)}{e_k(w)}$$

is a polynomial. In addition, as $p'_k(w) = a_k = \ell_k^{-1} \neq 0$, $p_k(w)$ and $R_k(w)$ have no double roots.

In order to calculate the polynomial $R_k(w)$, suppose

$$p_k(w) = \sum_{i=0}^k A_{k,i} w^{2^i}$$

and

$$e_k(w) = \sum_{i=0}^{k-1} B_{k,i} w^{2^i}.$$
 (12)

Then, we have the following result:

Theorem 5.1.
$$R_k(w) = \frac{1}{d_k} e_k(w) + C$$
, where $C = \frac{1}{d_{k-1}} + \frac{B_{k,k-2}^2}{d_k}$

Proof. Only for the purpose of this proof, suppose k is fixed and write $A_i = A_{k,i}$ and $B_i = B_{k,i}$. Now, directly dividing p_k by e_k , using that e_k is monic, the first term of the quotient ratio is $A_k w^{2^{k-1}}$. Then, in the first line of the long division, we have:

$$A_k B_{k-2} w^{2^{k-1}+2^{k-2}} + A_k B_{k-3} w^{2^{k-1}+2^{k-3}} + \dots + A_k B_0 w^{2^{k-1}+1} + A_{k-1} w^{2^{k-1}} + \text{ lower terms.}$$

This implies that the next term of the quotient is $A_k B_{k-2} w^{2^{k-2}}$, and therefore, multiplying by the summands of e_k , after cancellation of the term $A_k B_{k-2} w^{2^{k-1}+2^{k-2}}$, new summands will be incorporated into the residue in the positions corresponding to the powers:

Victor Bautista-Ancona et al.

$$w^{2^{k-1}}, w^{2^{k-2}+2^{k-3}}, ..., w^{2^{k-2}+1}.$$

Hence, all the new terms fall into the "lower terms" of the long division with exception of the coefficient on $w^{2^{k-1}}$. This coefficient is $A_{k-1} + A_k B_{k-2}^2$.

When continuing the division and canceling the terms of the form $A_k B_j w^{2^{k-1}+2^j}$ for j < k-2, the terms equal or higher to $w^{2^{k-1}}$ are not affected. This ensures that the obtained quotient is:

$$A_k w^{2^{k-1}} + A_k B_{k-2} w^{2^{k-2}} + A_k B_{k-3} w^{2^{k-3}} + \dots + A_k B_0 w + A_{k-1} + A_k B_{k-2}^2.$$

The result follows, using that $A_k = d_k^{-1}$ and $A_{k-1} = d_{k-1}^{-1}$.

6. Coefficient Formulas for $e_k(w)$

For $k \ge 2$, set

$$t_k = \begin{cases} \frac{k}{x^2}, & \text{if } k \text{ is even,} \\ \frac{k-3}{yx^2}, & \text{if } k \text{ is odd.} \end{cases}$$

Now, it is clear that $\deg(t_k) = k$ and that the set $\{1, t_2, ..., t_{k-1}\}$ is a basis of the vector space $A_{< k}$. Define $D_k := e_k(t_k) = \prod_{a \in A_k} a$. Thus, for $k \ge 3$,

$$e_{k}(w) = \prod_{a \in A_{
$$= \prod_{a \in A_{
$$= e_{k-1}(w)e_{k-1}(w+t_{k-1}) = e_{k-1}^{2}(w) + D_{k-1} \cdot e_{k-1}(w).$$
(13)$$$$

Expanding the right side of the equation (13), we find recursive formulas for the coefficients $B_{k,i}$ in (12):

$$e_{k-1}^{2}(w) + D_{k-1} \cdot e_{k-1}(w) = \left(\sum_{i=0}^{k-2} B_{k-1,i} w^{2^{i}}\right)^{2} + D_{k-1} \left(\sum_{i=0}^{k-2} B_{k-1,i} w^{2^{i}}\right)$$
$$= \sum_{i=1}^{k-1} B_{k-1,i-1}^{2} w^{2^{i}} + \sum_{i=0}^{k-2} D_{k-1} B_{k-1,i} w^{2^{i}}.$$

Indeed, we have

$$B_{k,0} = D_{k-1}B_{k-1,0} = D_{k-1}D_{k-2}\cdots D_2,$$

$$B_{k,i} = D_{k-1}B_{k-1,i} + B_{k-1,i-1}^2,$$

$$B_{k,k-1} = B_{k-1,k-2} = \cdots = B_{2,1} = 1.$$

Before developing explicit formulas for the coefficients $B_{k,i}$, we introduce the following symbols:

$$[1]_{w} = w^{2} + w,$$
$$[k]_{w} = w^{2^{k}} + w.$$

It is not difficult to prove that these symbols satisfy the following:

Lemma 6.1. Properties of the symbol $[k]_w$.

- (1) $[k]_{w}^{2^{j}} = [k]_{w}^{2^{j}},$ (2) $[1]_{[k]_{w}} = [k]_{[1]_{w}},$
- (3) $[k]_{w_1+w_2} = [k]_{w_1} + [k]_{w_2},$

(4)
$$[k + 1]_{w} = [k]_{w}^{2} + [1]_{w},$$

(5) $[k]_{w} = \sum_{i=0}^{k-1} [1]_{w}^{2^{i}}.$

Notice that $e_k(w)$ is a polynomial on $[1]_w$ of degree 2^{k-2} . Set

$$e_k(w) = \sum_{i=0}^{k-2} T_{k,i}[1]_w^{2^i}.$$

Next, we will find specific formulas for the coefficients $T_{k,i}$'s. First, define the following functions:

$$S_{n,r}(x_1, x_2, ..., x_n) = \sum_{n \ge i_1 > i_2 > \cdots > i_r \ge 1} \prod_{j=1}^r x_{i_j}^{2^{n-j+1-i_j}}.$$

We have the following lemma:

Lemma 6.2. Properties of the sums $S_{n,r}(x_1, x_2, ..., x_n)$.

(1) $S_{n,0}(x_1, ..., x_n) = 1$,

(2)
$$S_{n,1}(x_1, ..., x_n) = x_n + x_{n-1}^2 + \dots + x_1^{2^{n-1}},$$

(3)
$$S_{n+1,r}(x_1, ..., x_{n+1}) = S_{n,r}^2(x_1, ..., x_n) + x_{n+1}S_{n,r-1}(x_1, ..., x_n).$$

Proof. The first two assertions are immediate.

For the third, note that:

$$S_{n,r}^{2}(x_{1}, ..., x_{n}) = \left(\sum_{n \ge i_{1} > i_{2} > \dots > i_{r} \ge 1} \prod_{j=1}^{r} x_{i_{j}}^{2^{n-j+1-i_{j}}}\right)^{2}$$
$$= \sum_{n \ge i_{1} > i_{2} > \dots > i_{r} \ge 1} \prod_{j=1}^{r} x_{i_{j}}^{2^{n+1-j+1-i_{j}}}.$$
(14)

1017

On the other hand,

$$x_{n+1}S_{n,r-1}(x_1, ..., x_n) = x_{n+1} \sum_{n \ge i_1 > i_2 > \dots > i_{r-1} \ge 1} \prod_{j=1}^{r-1} x_{i_j}^{2^{n-j+1-i_j}}$$
$$= \sum_{n \ge i_1 > i_2 > \dots > i_{r-1} \ge 1} x_{n+1} \prod_{j=1}^{r-1} x_{i_j}^{2^{n-j+1-i_j}}.$$
(15)

Now, making $i_1 = n + 1$ and $i_{j+1} = i_j$ (moving the variable *j* to j + 1), we obtain that (15) becomes

$$\sum_{n+1=i_1>i_2>\dots>i_r\geq 1}\prod_{j=1}^r x_{i_j}^{2^{n+1-j+1-i_j}}.$$
(16)

Notice that the variable x_{i_j} with exponent $n - j + 1 - i_j$ in (15) coincide with the variable $x_{i_{j+1}}$ with exponent $n + 1 - j + 1 - i_{j+1}$ in (16).

Now, clearly the sum of (14) and (16) proves the lemma. $\hfill \Box$

Proposition 6.3. For

$$e_k(w) = \sum_{i=0}^{k-2} T_{k,i} [1]_w^{2^i},$$

the following holds

$$T_{k,i} = S_{k-2,k-2-i}(D_2, D_3, ..., D_{k-1}),$$

where

$$D_i = e_i(t_i).$$

Proof. Using the identity

$$e_{k+1}(w) = e_k^2(w) + D_k e_k(w)$$
, for $k \ge 2$,

we obtain the following recursive equations:

$$\begin{split} T_{k+1,0} &= D_k T_{k,0}, \\ T_{k+1,i} &= T_{k,i-1}^2 + D_k T_{k,i}, \\ T_{k+1,k-1} &= 1. \end{split}$$

Then, from induction suppose that the proposition is valid for $T_{k,i}$, using the recursive form, we get

$$T_{k+1,i} = T_{k,i-1}^2 + D_k T_{k,i}$$

= $S_{k-2,k-2-(i-1)}^2 (D_2, D_3, ..., D_{k-1}) + D_k S_{k-2,k-2-i} (D_2, D_3, ..., D_{k-1})$
= $S_{k-2,k-1-i}^2 (D_2, D_3, ..., D_{k-1}) + D_k S_{k-2,k-1-i-1} (D_2, D_3, ..., D_{k-1})$
= $S_{k-1,k-1-i} (D_2, D_3, ..., D_k).$

The last equality follows from Lemma 6.2. Now, the result follows from verifying that the coefficients $T_{k,i}$ coincide with $S_{k-2,k-2-i}$ $(D_2, D_3, ..., D_{k-1})$ for some first small values of k.

For simplicity, set $S_{k-2, k-2-i} := S_{k-2, k-2-i}(D_2, D_3, ..., D_{k-1}).$

Corollary 6.4. The coefficients of the polynomial

$$e_k(w) = \sum_{i=0}^{k-1} B_{k,i} w^{2^i}$$

are given by the formulas

$$\begin{split} B_{k,k-1} &= T_{k,k-2} = S_{k-2,0} = 1, \\ B_{k,i} &= T_{k,i} + T_{k,i-1} = S_{k-2,k-2-i} + S_{k-2,k-1-i}, \ for \ 1 \leq i \leq k-2, \\ B_{k,0} &= T_{k,0} = S_{k-2,k-2} = D_{k-1}D_{k-2} \cdots D_2. \end{split}$$

Proof. Note that

$$e_{k}(w) = \sum_{i=0}^{k-2} T_{k,i} [1]_{w}^{2^{i}}$$

= $\sum_{i=0}^{k-2} T_{k,i} (w + w^{2})^{2^{i}}$
= $T_{k,k-2} w^{2^{k-1}} + \sum_{i=1}^{k-2} (T_{k,i} + T_{k,i-1}) w^{2^{i}} + T_{k,0} w.$

7. Relationship Among the Values d_k , ℓ_k and D_k

Basically, these relationships are corollary of Theorem 5.1 and the explicit expression of the coefficients $B_{k,i}$ developed in the previous section.

If we evaluate the polynomial equality

$$p_k(w) = \frac{e_k^2(w)}{d_k} + Ce_k(w)$$
(17)

in $w = t_k$, we get that

$$1 = \frac{D_k^2}{d_k} + CD_k.$$

Solving for *C*, we obtain

$$C = \frac{1}{D_k} + \frac{D_k}{d_k} = \frac{d_k + D_k^2}{D_k d_k}.$$
 (18)

Now, using the definition of C in (5.1), we also have that

$$C = \frac{1}{d_{k-1}} + \frac{1 + D_{k-1}^2 + D_{k-2}^4 + \dots + D_2^{2^{k-2}}}{d_k},$$

since

$$B_{k,k-2}^2 = (1 + D_{k-1} + D_{k-2}^2 + \dots + D_2^{2^{k-3}})^2,$$

from Corollary 6.4 and part (2) of Lemma 6.2.

Multiplying by $D_k d_k$, we obtain

$$CD_k d_k = \frac{D_k d_k}{d_{k-1}} + D_k (1 + D_{k-1}^2 + D_{k-2}^4 + \dots + D_2^{2^{k-2}})$$

and using (18), we have

$$d_k + D_k^2 = \frac{D_k d_k}{d_{k-1}} + D_k (1 + D_{k-1}^2 + D_{k-2}^4 + \dots + D_2^{2^{k-2}}).$$

Therefore

$$d_k\left(1+\frac{D_k}{d_{k-1}}\right) = D_k\left(1+D_k+D_{k-1}^2+\dots+D_2^{2^{k-2}}\right),$$

and hence

$$d_{k} = \frac{D_{k}d_{k-1}}{d_{k-1} + D_{k}} (1 + D_{k} + D_{k-1}^{2} + \dots + D_{2}^{2^{k-2}})$$
$$= \frac{D_{k}d_{k-1}}{d_{k-1} + D_{k}} \cdot B_{k+1,k-1}.$$
(19)

Now, using the recursive formula (7) is easy to see that

$$d_2 = [1]_x$$

and also

$$D_2 = e_2(t_2) = [1]_{t_2} = [1]_x,$$

equation (19) gives a recursive procedure to calculate d_k , in terms of values D_i 's with $2 \le i \le k$.

Now, equating the coefficients of the linear terms of the polynomials in (17), we obtain that

$$\frac{1}{\ell_k} = CD_{k-1}D_{k-2}\cdots D_2$$

and using (18), we conclude that

$$\ell_k = \frac{D_k d_k}{(d_k + D_k^2)(D_{k-1}D_{k-2}\cdots D_2)}.$$

We summarize the above discussion in the main result of the article.

Theorem 7.1. Recursive formulas to compute ℓ_k and d_k values in terms of D_k 's,

(1)
$$d_2 = D_2$$
,
(2) $d_k = \frac{D_k d_{k-1}}{d_{k-1} + D_k} (1 + D_k + D_{k-1}^2 + \dots + D_2^{2^{k-2}})$,

(3)
$$\ell_k = \frac{D_k a_k}{(d_k + D_k^2)(D_{k-1}D_{k-2}\cdots D_2)}$$

Acknowledgements

Francisco Portillo thanks Conacyt for financial support for a sabbatical stay at Universidad Autónoma de Yucatán under the project grant #261761.

The authors also thank the anonymous referees for their valuable suggestions which led to the improvement of the manuscript.

References

- [1] L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1(2) (1935), 137-168.
- [2] D. Goss, Basic Structures of Function Field Arithmetic, 2nd ed., Springer-Verlag, 1998.

- [3] D. R. Hayes, Explicit Class Field Theory in Global Function Fields, Studies in Algebra and Number Theory, G. C. Rota, ed., Academic Press, San Diego, 1979, pp. 173-217.
- [4] R. E. MacRae, On unique factorization in certain rings of algebraic functions, J. Algebra 17 (1971), 77-91.
- [5] D. S. Thakur, Function Field Arithmetic, World Scientific Publishing Co. Pvt. Ltd., 2004.
- [6] D. S. Thakur, An alternate approach to solitons for $F_q[t]$, Journal of Number Theory 76 (1999), 301-319.