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Abstract 

We work out in detail the Drinfeld module over the ring 

[ ] ( ).1, 32
2 ++=+= xxyyyxA F  

The example in question is one of the four examples that come from 
quadratic imaginary fields with class number 1=h  and rank one. 

We develop specific formulas for the coefficients kd  and k  of the 

exponential and logarithmic functions and relate them with the product 

kD  of all monic elements of A of degree k. On the Carlitz module, 

kD  and kd  coincide, but this is not true for general Drinfeld 

modules. On this example, we obtain a formula relating both 
invariants. We prove also using elementary methods a theorem due to 
Thakur that relate two different combinatorial symbols important in 
the analysis of solitons. 
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1. Introduction 

Let qF  be a finite field of characteristic p and K be a function field over 

.qF  After we choose ∞, a fixed infinite place of K, let A be the ring of 

regular functions outside of ∞ and let ∞K  be its completion. Now take ∞C  

to be the completion of an algebraic closure of .∞K  

Let { }τ∞C  be the ring of twisted polynomials, i.e., the noncommutative 

ring of polynomials ∑ τi
ia  with coefficients in ∞C  such that .τ=τ qzz  A 

twisted polynomial { }τ∈τ++τ+= ∞C
d

daaaf 10  is identified with the 

qF -linear endomorphism of ,∞C  

( ) .10
dq

d
q zazazazfz +++=  

A Drinfeld A-module is an qF -algebra homomorphism { }τ→ρ ∞CA:  

injective, for which ( ) higher0 +τ=ρ aa  order terms in τ. The action 

( ) ( )zaza ρ=⋅  of A in ∞C  makes ∞C  into an A-module, and hence the 

name “Drinfeld module”. 

For each Drinfeld module ρ we associate an exponential entire function e 
defined by a power series 

( ) ∑
∞

=

=
0i i

q

d
zze

i

 for all .∞∈ Cz  

This exponential function satisfies the following fundamental functional 
equation: 

( ) ( )( ),zeaze aρ=  (1) 

for ∞∈ Cz  and ,Aa ∈  where aρ  stands for ( ).aρ  

The Carlitz module, defined by Carlitz [1] in 1935, is given by the 

qF -algebra homomorphism [ ] { }τ→ ∞CF tC q:  determined by .q
t tC τ+=  
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Equation (1) produces ( ) ( ) ( ) .qzeztetze +=  It follows that 

( )∑ ∑
∞

=

∞

=

+

=−

0 0
.

1

i i
q
i

q

i

qq

d
z

d
ztt

iii

 

By equating coefficients we get a unique solution [ ] ,1
q
nn dnd −=  where 

[ ] ( )ttn
nq −=  and .10 =d  Therefore, [ ][ ] [ ]

1
11

−
−=

nqq
n nnd  and it is 

easily seen that nd  is the product of all monic polynomials of degree n. 

Since ( )ze  is periodic, it cannot have a global inverse, but we may 

formally derive an inverse ( )zlog  for ( )ze  as a power series around the 

origin. By definition ( )( ) .log zze =  Since ( )ze  satisfies the functional 

equation ( ) ( ) ( ) ,qzeztetze +=  it follows that ( )( ) ( ( ) ).loglog qzeztetz +=  

Replacing ( )zlog  for z we obtain ( ) ( ) ( ).logloglog qztzzt +=  Let 

( ) ∑= .log i
qi

zz  Then 

( )∑ ∑
∞

=

∞

=

+

=⋅−

0 0
.

1

i i i

q

i

qq iii
zztt  

It follows that [ ] .11 ii i +−=+  Therefore ( ) [ ][ ] [ ].111 −−= iii
i  

We follow the ideas developed in the Carlitz module case, but applied to 

the Drinfeld module over [ ] ( ).1, 32
2 ++=+= xxyyyxA F  We explore 

specific ways to understand the mentioned example, which is one of four 
examples provided from imaginary quadratic fields with class number 1=h  
[4] and rank 1. The formulas obtained are compared with Theorem 4.15.4 of 
[5] and are related to solitons, as exposed in Chapter 8 of the same reference, 
and Theorem 3 of the article [6]. 

2. Action of the Drinfeld Module on the Variables x and y 

In our example, we have ( ) ( ) ,3,2,1 −=−== ∞∞∞ yvxvd  and using 
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that ( ) ( ) ,,deg Aadava ∈∀−= ∞∞  it follows that ( ) 2deg =x  and 

( ) .3deg =y  

Based on it, the Drinfeld module ρ that we are considering has rank 1 
and is determined by its values in x and y (actually, it is enough to know its 
value in one element ,Aa ∈  see 2.5 in [5]). According to the aforementioned 
degrees and that the unique sign in our example is +1, we obtained that 

,2
1 τ+τ+=ρ xxx  

32
21 τ+τ+τ+=ρ yyyy  

with .,, 211 Ayyx ∈  Now, using the commutative property of the Drinfeld 

module xyyx ρρ=ρρ  and equating on degree 1, we get 

( ) ( ).2
1

2
1 xxyyyx +=+  

Next, using the equation on the curve 132 ++=+ xxyy  and dividing, we 

obtain 

.11 211 ⎟
⎠
⎞

⎜
⎝
⎛

+
++=

xx
xxy  

This implies that 1
2 xxx |+  and .1

2 yyy |+  Assuming that ,2
1 xxx +=  it 

is also obtained that .2
1 yyy +=  Now, equating on degree 2, one has the 

equation 

( ) ( ).4
1

2
1

2
112

4 yyxyxyyxx +++−=+  (2) 

But, we can use the identities 

( ) yyyyyy +++=+ 2224  

( ) ( )122 +++= yyyy  

( ) ( )xxyy ++= 32  

( ) ( ) ( )122 +++= xxxyy  
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and 

( ) ( ).1224 +++=+ xxxxxx  

So dividing the equation (2) by ,2
1 xxx +=  and substituting the values 

1x  and ,1y  we get 

( ) ( ) ( ) ( ) ( )11 22222
2 +++++++=++ xyyyyxxyyxxy  

( ) ( )1222 ++++= xyyyy  

( ) ( ).232 xxxyy +++=  

Thus, clearing ,12 ++ xx  we have ( ),2
2 yyxy +=  as it is known in 

the literature [3, Example 11.3]. 

3. Exponential and Logarithm Coefficients 

We find recursive formulas for the coefficients of both the exponential 
( )ze  and the logarithmic ( )zlog  functions associated to the Drinfeld module 

from Section 2. 

Write 

( ) ∑ ∑
∞

=

∞

=

==
0 0

2
2

i i
i

i

i
i

zad
zze  

and 

( ) ∑ ∑
∞

=

∞

=

==
0 0

2
2

,log
i i

i
i

i
i

zbzz  

where 1−= ii da  and .1−= iib  Using that 

( ) ( )( )zexze xρ=  

( ) [ ] ( ) ( ),1 42 zezezxe x ++=  
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where [ ] .1 2 xxx +=  Then, expanding both sides of the equality: 

( ) ( ) [ ] ( ) ( ),1 42 zezezxexze x +=+  

we have on the left side: 

( ) ( ) ( )∑
∞

=

+=+
0

22

j
j

jj
zaxxzxexze  

[ ]∑
∞

=

=
0

2

j
jx

j
zaj  

[ ] [ ]∑
∞

=

+=
2

22
1 ,1

j
jxx

j
zajza  (3) 

where [ ] .: 2 xxj
j

x +=  Now, expanding the right side, we get: 

[ ] ( ) ( ) [ ] ∑ ∑
∞

=

∞

=

++
+=+

0 0

242242 .11
21

i i
iixx

ii
zazazeze  

By setting 1+= ij  in the first sum, and 2+= ij  in the second sum, we 

obtain: 

[ ] ( ) ( ) [ ] ∑ ∑
∞

=

∞

=
−− +=+

1 2

24
2

22
1

42 11
j j

jjxx
jj

zazazeze  

[ ] ([ ] )∑
∞

=
−− ++=

2

24
2

2
1

22
0 .11

j
jjxx

j
zaaza  (4) 

Comparing equations (3) and (4), recursive formulas are obtained 

,2
01 aa =  

[ ]
[ ]x

jjx
j j

aa
a

4
2

2
11 −− +

=  for .2≥j  (5) 
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Subsequently, we assume that ,10 =a  i.e., the exponential is normalized. 

Notice that if we do not normalize the coefficients, the exponential function 
varies by a factor given by the initial term. If we denote ( )0, aze  to this 

exponential function, it is easy to see that 

( ) ( ),, 00 zeaaze =  (6) 

where ( )ze  is the normalized exponential. 

Now, in terms of the s’jd  (assuming also, the normalization of the 

exponential), the recursive formula is as follows: 

,12
01 == dd  

[ ]
[ ] 2

1
4

2

4
2

2
1

1 −−

−−

+
=

jjx

jjx
j

dd

ddj
d  for .2≥j  (7) 

Similarly, for the logarithm function, we have that 

( ) ( )( )zzx xρ= loglog  

( [ ] )421log zzxz x ++=  

( ) ([ ] ) ( ),log1loglog 42 zzxz x ++=  

from which it follows that 

( ) ( ) ([ ] ) ( ).log1logloglog 42 zzxzzx x +=+  

So, we expanded the left side to 

 ( ) ( ) ( )∑
∞

=

+=+
0

22loglog
j

j
jj

zbxxxzzx  

[ ]∑
∞

=

=
1

2 .
j

jx
j

zbj  (8) 
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Note that [ ] .00 =x  The right side must be 

([ ] ) ( ) [ ]∑ ∑
∞

=

∞

=

++
+=+

0 0

22242 .1log1log
21

i i
iixx

iii
zbzbzz  

Again, by setting 1+= ij  in the first sum, and 2+= ij  in the second 

sum, we obtain 

([ ] ) ( ) [ ] ([ ] )∑
∞

=
−− ++=+

−

2

2
21

22
1

42 .11log1log
1

j
jjxxx

jj
zbbzbzz  (9) 

Comparing the terms in the equations (8) and (9), we obtain the recursive 
formulas: 

,01 bb =  

[ ]
[ ]x

jjx
j j

bb
b

j
21

2 1
1 −− +

=

−

 for .2≥j  (10) 

Now again, if ( )0,log bz  is the logarithmic function with initial term ,0b  

and ( ) ( )1,loglog zz =  is the normalized logarithm, by the recursion formula, 

we deduce the relation: 

( ) ( ).log,log 00 zbbz =  (11) 

In terms of values ,s’i  the recursions are as follows: 

,01 =  

[ ]

[ ] 12
2

21
1

1 −−

−−

+
= −

jjx

jjx
j j

j
 for .2≥j  

4. Formulæ for Computing aρ  

The first formula is recursive and is in the spirit of Proposition 3.3.10 in 
[2]. 
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Assume that ∑ = τρ=ρ d
k

k
kaa 0 ,  with ( ).deg ad =  We will use again 

commutativity xaax ρρ=ρρ  and the explicit expression: [ ] τ+=ρ xx x 1  

.2τ+  Then, multiplying 

( [ ] )
⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
τρτ+τ+=ρρ ∑

=

d

k

k
kaxax x

0
,

21  

( [ ] )∑
=

++ τρ+τρ+τρ=
d

k

k
ka

k
kax

k
kax

0

24
,

12
,, 1  

and multiplying 

( [ ] )2

0
, 1 τ+τ+

⎟
⎟
⎠

⎞

⎜
⎜
⎝

⎛
τρ=ρρ ∑

=
x

d

k

k
kaxa x  

( [ ] )∑
=

++ τρ+τρ+τρ=
d

k

k
ka

k
kax

k
ka

kk
x

0

2
,

1
,

2
,

2 .1  

By comparing terms a recursive formula is obtained 

aa =ρ 0,                    (first term in recursion), 

aaa +=ρ 2
1,           (comparing degree ,)1=k  

[ ]
[ ]

[ ]
[ ] ,

11 4
2,

2
1,2,1,

2

,

1

x

kakax

x

kakax
ka kk

k
−−−− ρ+ρ

+
ρ+ρ

=ρ

−

 for .2≥k  

Note the similarity to the recursive formulas for s’ja  and s’jb  in the 

previous section, equations (5) and (10). The same phenomenon occurs in the 
Carlitz module, but in such a case, there is only a single summand. 

Another way to calculate ,aρ  is based on the use of the exponential and 

the logarithm functions and their formal development as power series. We 
know that 
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( )( ) ( )( )( ) ( ).loglog zzezae aa ρ=ρ=  

Using power series as in the previous section, we get to 

( ) ∑ ∑
∞

= =
− ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
=ρ

0

2

0

22

k

k

j
jkja

kjj
zabaz  

∑ ∑
∞

= = −
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

0

2

0 2

2
.

k

k

j jkj

k

j

j

z
d

a  

The combinatorial terms in the sum, are the ones that Thakur used to 
develop his alternative perspective on solitons [6]. 

We introduce the following notation used hereafter: 

( ) ∑
= −

=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=
k

j jkj
kk j

j

d

w
q

w
wp

0
2

2
.::  

Hence, since ∑ τρ=ρ k
kaa ,  is a monic polynomial in τ of degree ( ),deg a  

we have that ( ) 0=apk  if ( ) ;deg ka <  and ( ) 1=apk  if ( ) .deg ka =  

5. Comparing the Polynomials ( )wpk  and ( )wek  

Define the following sets: 

( ){ },deg:: kaAaA k <∈=<  

( ){ }kaAaAk =∈= deg::  

and the polynomial 

( ) ( )∏
<∈

+=

kAa
k awwe .  

Clearly, by the last paragraph in the previous Section 4, every kAa <∈  

is a root of ( ).wpk  Thus, 
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( ) ( )
( )we
wpwR

k
k

k =:  

is a polynomial. In addition, as ( ) ( )wpawp kkkk ,01 ≠==′ −  and ( )wRk  

have no double roots. 

In order to calculate the polynomial ( ),wRk  suppose 

( ) ∑
=

=
k

i
ikk

i
wAwp

0

2
,  

and 

( ) ∑
−

=

=
1

0

2
, .

k

i
ikk

i
wBwe  (12) 

Then, we have the following result: 

Theorem 5.1. ( ) ( ) ,1 CwedwR k
k

k +=  where .1
2

2,

1 k

kk

k d
B

dC −

−
+=  

Proof. Only for the purpose of this proof, suppose k is fixed and write 

iki AA ,=  and ., iki BB =  Now, directly dividing kp  by ,ke  using that ke  

is monic, the first term of the quotient ratio is .
12 −k

wAk  Then, in the first line 

of the long division, we have: 

+++
−−−− +

−
+

−
3121 22

3
22

2
kkkk

wBAwBA kkkk  

++
−−

−
+ 11 2

1
12

0
kk

wAwBA kk  lower terms. 

This implies that the next term of the quotient is ,
22

2
−

−
k

wBA kk  and 

therefore, multiplying by the summands of ,ke  after cancellation of the term 

,
21 22

2
−− +

−
kk

wBA kk  new summands will be incorporated into the residue in 

the positions corresponding to the powers: 
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....,,, 12222 2321 ++ −−−− kkkk
www  

Hence, all the new terms fall into the “lower terms” of the long            

division with exception of the coefficient on .
12 −k

w  This coefficient is 

.2
21 −− + kkk BAA  

When continuing the division and canceling the terms of the form 
jk

wBA jk
22 1+−

 for ,2−< kj  the terms equal or higher to 
12 −k

w  are not 

affected. This ensures that the obtained quotient is: 

.2
210

2
3

2
2

2 321
−−−− ++++++

−−−
kkkkkkkkk BAAwBAwBAwBAwA

kkk
 

The result follows, using that 1−= kk dA  and .1
11

−
−− = kk dA  ~ 

6. Coefficient Formulas for ( )wek  

For ,2≥k  set 

⎪
⎩

⎪
⎨

⎧
= −

.oddisif,

even,isif,

2
3

2

kyx

kxt k

k

k  

Now, it is clear that ( ) ktk =deg  and that the set { }12 ...,,,1 −ktt  is a 

basis of the vector space .kA<  Define ( ) ∏ ∈==
kAakkk ateD .:  Thus, for 

,3≥k  

( ) ( ) ( ) ( )∏ ∏ ∏
< −< −∈ ∈ ∈

++=+=

k k kAa Aa Aa
k awawawwe

1 1

 

( ) ( )∏ ∏
−< −<∈ ∈

− +++=

1 1

1
k kAa Aa

k atwaw  

( ) ( ) ( ) ( ).11
2

1111 weDwetwewe kkkkkk −−−−−− ⋅+=+=  (13) 
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Expanding the right side of the equation (13), we find recursive formulas 
for the coefficients ikB ,  in (12): 

( ) ( )
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⋅+ ∑∑

−

=
−−

−

=
−−−−

2

0

2
,11

22

0

2
,111

2
1

k

i
ikk

k

i
ikkkk

ii
wBDwBweDwe  

∑ ∑
−

=

−

=
−−−− +=

1

1

2

0

2
,11

22
1,1 .

k

i

k

i
ikkik

ii
wBDwB  

Indeed, we have 

,2210,110, DDDBDB kkkkk −−−− ==  

,2
1,1,11, −−−− += ikikkik BBDB  

.11,22,11, ==== −−− BBB kkkk  

Before developing explicit formulas for the coefficients ,, ikB  we 

introduce the following symbols: 

[ ] ,1 2 www +=  

[ ] .2 wwk
k

w +=  

It is not difficult to prove that these symbols satisfy the following: 

Lemma 6.1. Properties of the symbol [ ] .wk  

(1) [ ] [ ] ,22 jj
ww kk =  

(2) [ ][ ] [ ][ ] ,1 1 ww
kk =  

(3) [ ] [ ] [ ] ,
2121 wwww kkk +=+  
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(4) [ ] [ ] [ ] ,11 2
www kk +=+  

(5) [ ] [ ]∑ −
== 1

0
2 .1k

i ww
i

k  

Notice that ( )wek  is a polynomial on [ ]w1  of degree .2 2−k  Set 

( ) [ ]∑
−

=

=
2

0

2
, .1

k

i
wikk

i
Twe  

Next, we will find specific formulas for the coefficients .s’, ikT  First, 

define the following functions: 

( ) ∑ ∏
≥>>>≥ =

−+−
=

1 1

2
21,

21

1
....,,,

r

jijn

j
iiin

r

j
inrn xxxxS  

We have the following lemma: 

Lemma 6.2. Properties of the sums ( )....,,, 21, nrn xxxS  

(1) ( ) ,1...,,10, =nn xxS  

(2) ( ) ,...,,
12

1
2

111,
−

+++= −
n

xxxxxS nnnn  

(3) ( ) ( ) ( )....,,...,,...,, 11,11
2
,11,1 nrnnnrnnrn xxSxxxSxxS −+++ +=  

Proof. The first two assertions are immediate. 

For the third, note that: 

( )
2

1 1

2
1

2
,

21

1
...,,

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
= ∑ ∏

≥>>>≥ =

−+−

r

jijn

j
iiin

r

j
inrn xxxS  

∑ ∏
≥>>>≥ =

−+−+
=

1 1

2

21

11
.

r

jijn

j
iiin

r

j
ix  (14) 
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On the other hand, 

( ) ∑ ∏
≥>>>≥

−

=
+−+

−

−+−
=

1

1

1

2
111,1

121

1
...,,

r

jijn

j
iiin

r

j
innrnn xxxxSx  

 ∑ ∏
≥>>>≥

−

=
+

−

−+−
=

1

1

1

2
1

121

1
.

r

jijn

j
iiin

r

j
in xx  (15) 

Now, making 11 += ni  and jj ii =+1  (moving the variable j to ,)1+j  

we obtain that (15) becomes 

∑ ∏
≥>>>=+ =

−+−+

11 1

2

21

11
.

r

jijn

j
iiin

r

j
ix  (16) 

Notice that the variable jix  with exponent jijn −+− 1  in (15) 

coincide with the variable 1+jix  with exponent 111 +−+−+ jijn  in (16). 

Now, clearly the sum of (14) and (16) proves the lemma. ~ 

Proposition 6.3. For 

( ) [ ]∑
−

=

=
2

0

2
, ,1

k

i
wikk

i
Twe  

the following holds 

( ),...,,, 1322,2, −−−−= kikkik DDDST  

where  

( ).iii teD =  

Proof. Using the identity 

( ) ( ) ( ),2
1 weDwewe kkkk +=+  for ,2≥k  
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we obtain the following recursive equations: 

,0,0,1 kkk TDT =+  

,,
2

1,,1 ikkikik TDTT += −+  

.11,1 =−+ kkT  

Then, from induction suppose that the proposition is valid for ,, ikT  using the 

recursive form, we get 

ikkikik TDTT ,
2

1,,1 += −+  

( )( ) ( )1322,2132
2

12,2 ...,,,...,,, −−−−−−−−− += kikkkkikk DDDSDDDDS  

( ) ( )13211,2132
2

1,2 ...,,,...,,, −−−−−−−−− += kikkkkikk DDDSDDDDS  

( )....,,, 321,1 kikk DDDS −−−=  

The last equality follows from Lemma 6.2. Now, the result                           
follows from verifying that the coefficients ikT ,  coincide with 

ikkS −−− 2,2 ( )132 ...,,, −kDDD  for some first small values of k. ~ 

For simplicity, set ( )....,,,: 1322,22,2 −−−−−−− = kikkikk DDDSS  

Corollary 6.4. The coefficients of the polynomial 

( ) ∑
−

=

=
1

0

2
,

k

i
ikk

i
wBwe  

are given by the formulas 

,10,22,1, === −−− kkkkk STB  

,1,22,21,,, ikkikkikikik SSTTB −−−−−−− +=+=  for ,21 −≤≤ ki  

.2212,20,0, DDDSTB kkkkkk −−−− ===  
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Proof. Note that 

( ) [ ]∑
−

=

=
2

0

2
, 1

k

i
wikk

i
Twe  

( )∑
−

=

+=
2

0

22
,

k

i
ik

i
wwT  

( )∑
−

=
−− +++=

− 2

1
0,

2
1,,

2
2, .

1 k

i
kikikkk wTwTTwT

ik
 ~ 

7. Relationship Among the Values kkd ,  and kD  

Basically, these relationships are corollary of Theorem 5.1 and the 
explicit expression of the coefficients ikB ,  developed in the previous 

section. 

If we evaluate the polynomial equality 

( ) ( ) ( )wCed
wewp k
k

k
k +=

2
 (17) 

in ,ktw =  we get that 

.1
2

k
k
k CDd

D
+=  

Solving for C, we obtain 

.1 2

kk
kk

k
k

k dD
Dd

d
D

DC +
=+=  (18) 

Now, using the definition of C in (5.1), we also have that 

,11
22

2
4

2
2

1
1 k

kk
k d

DDD
dC

k−
++++

+= −−
−
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since 

( ) ,1 22
2

2
21

2
2,

3−
++++= −−−

k
DDDB kkkk  

from Corollary 6.4 and part (2) of Lemma 6.2. 

Multiplying by ,kkdD  we obtain 

( )
22

2
4

2
2

1
1

1
−

+++++= −−
−

k
DDDDd

dDdCD kkk
k

kk
kk  

and using (18), we have 

( ).1
22

2
4

2
2

1
1

2 −
+++++=+ −−

−

k
DDDDd

dDDd kkk
k

kk
kk  

Therefore 

( ),11
22

2
2

1
1

−
++++=⎟

⎠
⎞

⎜
⎝
⎛ + −

−

k
DDDDd

Dd kkk
k

k
k  

and hence 

( )
22

2
2

1
1

1 1
−

++++
+

= −
−

− k
DDDDd

dDd kk
kk

kk
k  

.1,1
1

1
−+

−
− ⋅

+
= kk

kk
kk BDd

dD  (19) 

Now, using the recursive formula (7) is easy to see that 

[ ]xd 12 =  

and also 

( ) [ ] [ ] ,11
2222 xtteD ===  

equation (19) gives a recursive procedure to calculate ,kd  in terms of values 

s’iD  with .2 ki ≤≤  
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Now, equating the coefficients of the linear terms of the polynomials in 
(17), we obtain that 

221
1 DDCD kk
k

−−=  

and using (18), we conclude that 

( ) ( )
.

221
2 DDDDd

dD

kkkk

kk
k

−−+
=  

We summarize the above discussion in the main result of the article. 

Theorem 7.1. Recursive formulas to compute k  and kd  values in 

terms of ,’ sDk  

(1) ,22 Dd =  

(2) ( ),1
22

2
2

1
1

1 −
++++

+
= −

−
− k

DDDDd
dDd kk

kk
kk

k  

(3) 
( ) ( )

.
221

2 DDDDd
dD

kkkk

kk
k

−−+
=  
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