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1. Introduction

In 1775, more than 30 years after Euler introduced the zeta values ζ(s), he intro-
duced and studied the multizeta values ζ(s1, · · · , sr). They have resurfaced with renewed 
interest because of their connections with several other parts (see e.g., introduction of 
[8] for references) of mathematics, for example, in the Grothendieck–Ihara program to 
study the absolute Galois group of Q through the algebraic fundamental group of the 
projective line minus three points. Thus the understanding of the structure of relations 
between them is quite important. The simple trichotomy ni > ni+1 or ni = ni+1 or 
ni < ni+1 applied to the sum definition of multizeta (which is over such ordered tuples 
of natural numbers) shows (the so-called sum shuffle relations) that the product of two 
multizeta values is a linear combination of multizeta values, and thus the Q-span of the 
multizeta values is an algebra.

While the trichotomy approach and these sum shuffle relations completely fail for the 
multizeta values of [6, Section 5.10], [8,9,2] for function fields over Fq, it was shown in [9]
that a different mechanism leads to a different kind of combinatorially involved shuffle 
identities (Theorem 3.1.1), which are ‘universal’ in the sense that they work for any 
function field together with a rational (i.e., degree one) place at infinity corresponding 
to the ring of integers A. In particular, the Fq-span of all multizeta values is an algebra 
in this case.

We focus on this aspect, but point out in passing that, as in the classical case, these 
multizeta values also have connections with the absolute Galois group through the ana-
logue of Ihara power series, in a work by G. Anderson with the second author, and with 
the periods of Carlitz–Tate–Anderson mixed t-motives [1,2], at least in the simplest case 
A = Fq[t].

In this paper, we look at the shuffle relations in the case where the place at infinity 
is not rational, so that there are more choices of signs (in the finite residue field of 
the completion) than those available in the finite residue field of the function field. 
This leads to two different natural approaches to define multizeta, and we show that in 
each approach, certain kind of (different for the two approaches) fundamental relations 
(Theorems 3.3.1, 3.4.1) survive! In Section 4, we discuss the results and conjectures on 
the classification of these relations, and in the last section we briefly mention higher 
depth situation.

The interesting form of the surviving relations as well as the numerical experimenta-
tion, admittedly quite limited, which suggests that these might be the only ones which 
survive, make us wonder if there is any deeper reason behind this.

2. Notation, background and definitions

Z {integers}
Z+ {positive integers}
q a power of a prime p
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Fq a finite field of q elements
K a function field of one variable with field of constants Fq

∞ a place of K of any degree
d∞ the degree of ∞
K∞ the completion of K at ∞
F∞ the residue field of K∞
A the ring of elements of K with no poles outside ∞
A+ ‘monics’ or ‘positives’ in A, to be defined below
Ad elements of A of degree d

A<d elements of A of degree less than d

Ad+ Ad ∩A+
A<d+ A<d ∩A+
[n] = tq

n − t

�n =
n∏

i=1
(t− tq

i

)

“even” multiple of q − 1
For A = Fq[t], with a chosen t (or equivalently a sign), Carlitz considered the set of 

‘monic’ polynomials A+ in t as replacement of Z+ and investigated the (Carlitz) zeta 
values ζA(s) =

∑
a∈A+

a−s ∈ K∞ for s ∈ Z+, in a parallel way to the (Euler–Riemann) 
zeta values ζZ(s) =

∑
a∈Z+

a−s. Note that while Z+ is closed under multiplication and 
addition, A+ is only closed under multiplication.

Note K∞ := F∞((u)) and that F∞ is a finite field with qd∞ elements. From the 
expansion of non-zero element x ∈ K∞ in a Laurent series in (fixed generator) u, we 
define the degree deg x = −d∞v∞(x) as usual, so that for a in A, deg a = dimFq

(A/aA), 
and we define the sign sgn(x) ∈ F∗

∞ to be the leading coefficient in the expansion of x.
If d∞ = 1, the elements with sign 1 are called monic or positive. When the degree 

d∞ > 1, there are two somewhat natural naive approaches generalizing this.
In the approach 1, the monic elements are elements of some fixed sign θ ∈ F∗

∞. We 
put S = {θ} in this case. (We will take it to be 1 in practice, so that monics are 
multiplicatively closed.)

In the approach 2, we can let S ⊂ F∗
∞ be a fixed set of representatives of F∗

∞/F∗
q and 

define a monic element to be an element of sign in S. (When q = 2, all signs are then 
monic, and monics are multiplicatively closed, but in general, it is not possible to choose 
S to be multiplicatively closed.)

Let S be a subset of F∗
∞ chosen in either of the two ways explained above. Let A+ be 

the set of ‘monic’ elements, that is,

A+ := {a ∈ A : sgn(a) ∈ S}.

For s ∈ Z+ and d ∈ Z≥0, put

Sd(s) :=
∑ 1

as
∈ K, ζ(s) :=

∞∑
Sd(s) ∈ K∞.
a∈Ad+ d=0
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Given integers si ∈ Z+ and d ≥ 0, put

Sd(s1, . . . , sr) := Sd(s1)
∑

d>d2>···>dr≥0

Sd2(s2) · · ·Sdr
(sr) ∈ K.

In particular, with an obvious extension of notation, we have Sd(s1, s2) = Sd(s1)S<d(s2).
For si ∈ Z+, define the multizeta value ζ(s1, . . . , sr) by using the partial order on A+

given by the degree, and grouping the terms according to it:

ζ(s1, . . . , sr) :=
∑
d≥0

Sd(s1, · · · sr) =
∑
d

∑ 1
as11 · · · asrr

∈ K∞,

where the second sum is over all ai ∈ A+ of degree di such that d = d1 > · · · > dr ≥ 0. We 
say that this multizeta value, or rather the tuple (s1, . . . , sr), has depth r and weight

∑
si.

We focus on depth 2. For a, b ∈ Z+, we define

Δd(a, b) := Sd(a)Sd(b) − Sd(a + b), Δ(a, b) := Δd∞(a, b).

Remarks 2.0.1.

(1) Since Δd(a, b) = Δd(b, a), we can assume without loss of generality, when needed, 
that a ≤ b.

(2) Since we are in characteristic p, we have

Sd(spn) = Sd(s)p
n

, Sd(s1p
n, s2p

n) = Sd(s1, s2)p
n

.

So we can often restrict to si’s not all divisible by p without loss of generality. We 
call such tuples primitive.

(3) If we choose the usual place at infinity, for K = Fq(t), with uniformizer 1/t and the 
usual definition of monic, then the ring of integers A is Fq[t] and the zeta values 
coincide with the Carlitz zeta values.

(4) When d∞ > 1, we have used [6] the second approach while dealing with the gamma 
or zeta values.

3. Shuffle relations in depth 2

3.1. When the place at infinity is rational

First we recall [9] the shuffle relations result when d∞ = 1.

Theorem 3.1.1.

(1) If for A = Fq[t] there exist fi ∈ Fp and ai ∈ Z+ such that

Δd(a, b) =
∑

fiSd(ai, a + b− ai) (1)
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holds for d = 1, then for any A with a rational place at infinity, (1) holds for all 
d ≥ 0.

(2) For Fq[t], given a, b ∈ Z+, there always exist fi ∈ Fp and ai ∈ Z+, so that (1) holds 
for d = 1.

3.2. Differences when the place at infinity is not rational

Calculation (using open-source SAGE software) of several examples, when d∞ > 1
trying to express Δd as linear combination of Sd’s suggested that only certain relations 
survive. We prove those relations below.

The numerical evidence suggests that independently of which convention for signs we 
take, there exist a, b such that ζ(a)ζ(b) cannot be written as a Fq-linear combination of 
multizetas. We first examine differences at the finite level.

Example 3.2.1. Let K = F2(t), let ∞ be the only place of K of degree two. Then 
K∞ = F∞((u)), with F∞ = {0, 1, θ, θ + 1} and θ2 + θ + 1 = 0.

Let a = 1 and b = 2. For F2[t], we have Δd(a, b) = Sd(b, a) for all d ≥ 0.

(i) With singleton S = {θ} of F∗
∞, we have that Δ2(a, b) �= 0 and S2(a, b) = S2(b, a) = 0. 

Therefore, Δd(a, b) is not a F2-linear combination of Sd(ai, bi)’s, with weight 
ai + bi = 3, when d = d∞ = 2.

(ii) If we take S = {1}, then Δ2(a, b) = S2(b, a) but Δd(a, b) �= Sd(b, a) for d =
2d∞, 3d∞, 4d∞. Thus, Δd∞(a, b) = Sd∞(b, a) does not imply Δd(a, b) = Sd(b, a) for 
all d ≥ 0.

(iii) With S = F∗
∞, Δ(a, b) = 0. None of the F2-linear combinations of Sd(1, 2) and 

Sd(2, 1) matches Δd(a, b), when d = 2d∞, 3d∞, 4d∞.

For S = F∗
∞ and (a, b) any of the pairs (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), 

(2, 5), (2, 7), (3, 4), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (5, 6), (5, 7), (5, 8), it is possible 
to write Δ(a, b) as a linear combination of Sd∞(ai, bi)’s, but the corresponding linear 
combination does not hold when we take d = 2d∞ = 4.

(I) (a, b) = (1, 3). Then, Δ(1, 3) = 0, but there are no f1, f2, f3 ∈ F2 such that 
Δd(1, 3) = f1Sd(1, 3) + f2Sd(2, 2) + f3Sd(3, 1) when d = 4, 6, 8. On the other hand, for 
F2[t], Δd(a, b) = Sd(2, 2) + Sd(3, 1) holds for all d ≥ 0.

(II) The equality Δd(1, 4) = Sd(2, 3) + Sd(3, 2) holds for d = d∞, but not for d =
2d∞, 3d∞, 4d∞. Furthermore, when d = 2d∞, Δd(1, 4) is not a F2-linear combination of 
Sd(ai, bi)’s of weight 5.

Example 3.2.2 (S is a set of representatives of F∗
∞/F∗

q). Let K = F3(t), let P∞ the 
degree two place corresponding to t2 + 1, so that K = F∞((u)), with F∞ = F3(i), where 
i2 = −1. Let S = {1, 2i, i + 1, i + 2}. It is not possible to write Δd(a, b) as a linear 
combination of Sd(1, a + b − 1), . . . , Sd(a + b − 1, 1) for d = d∞ = 2 when (a, b) is one 
of the following: (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 3), (2, 5), (3, 4), 
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(3, 5), (4, 4). If (a, b) = (1, 3), no linear combination of Sd(1, 3), Sd(2, 2), Sd(3, 1) matches 
Δd(a, b), d = νd∞ = 2, 4, 6.

Example 3.2.3. Next we give an example (one in each approach) showing that the product 
of zetas needs not to be a sum of multizetas, respecting weights or not (i.e., the Fp-span 
of the multizetas is not an algebra). In fact, we can use the first examples above, such as 
K = F2(t) and the degree 2 prime at infinity. Then with the approach 2, i.e., with the full 
set of signs, to see that ζ(1)ζ(2) is not linear combination of ζ(3), ζ(1, 2), ζ(2, 1), ζ(1, 1, 1), 
it is enough to note that ζ(1)ζ(2) −ζ(3) has the maximum agreement as Laurent series in 
u with linear combination ζ(2, 1) +ζ(1, 2), but they differ in u33 place. (This corresponds 
to Δ2(1, 2) = 0, but Δ4(1, 2) having valuation 33 as mentioned above.) Ignoring all the 
multizeta values with valuation at infinity more than 33, we have checked that no other 
combination works, even if we ignore weights. But we omit the details.

The same can be said with approach 1, using just one sign θ, when ζ(1)ζ(2) − ζ(3)
has valuation 4, but valuations of ζ(2, 1), ζ(1, 2), ζ(1, 1, 1) are 22, 14, 54 respectively, and 
even without weight restriction, no combination is possible.

3.3. Situation in approach 1 to the signs

Theorem 3.3.1. Consider ‘monics’ and multizeta defined by approach 1. If a, b ∈ Z+ are 
such that

Δd(a, b) = Sd(a)Sd(b) − Sd(a + b) = 0 (2)

holds for Fq[t] and d = 1, then, (2) holds for all d ≥ 0 for any A with ∞ of any degree. 
In this case, we have the ‘classical sum shuffle’ identity

ζ(a)ζ(b) = ζ(a + b) + ζ(a, b) + ζ(b, a). (3)

Proof. (Compare with the first part of the proof of Theorem 2 in [9].)
First note that if d∞ does not divide d, then Ad+ is empty (but A<d+ could be non 

empty) and thus Δd(a, b) = 0. Note that it is possible that Ad+ be non empty but 
A<d+ = ∅.

Consider n, n′ ∈ Ad+, m, m′ ∈ A<d. Define

Sn,m := {(n + θm, n + μm): θ, μ ∈ Fq, θ �= μ} ,
n ∼m n′ ↔ n′ = n + θm, for some θ ∈ Fq.

Then, the sets Sn,m are equal or disjoint with Sn′,m′ , they are the equivalence classes 
of ∼ and partition the set {(n1, n2):ni ∈ Ad+, n1 �= n2}. Fix d > 0 divisible by d∞. 
Writing t = n/m, we have

∑ 1
na

1n
b
2

=
∑ 1

(n + θm)a(n + μm)b

(n1,n2)∈Sn,m θ �=μ∈Fq
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= 1
ma+b

∑
θ �=μ∈Fq

1
(t + θ)a(t + μ)b

= 1
ma+b

(0)

= 0.

The third equality follows from (2). By summing over the partition, we obtain 
Δd(a, b) = 0. Since also Δd(a, b) = 0 for d = 0, the theorem follows. �
3.4. Situation in approach 2 to the signs

Theorem 3.4.1. Consider ‘monics’ and multizeta defined by approach 2. If a, b ∈ Z+ are 
such that

Δd(a, b) = −Sd(a, b) − Sd(b, a) (4)

holds for Fq[t] and d = 1, then, (4) holds for all d ≥ 0 and for any A with ∞ of any 
degree. In this case, we have the ‘zeta product’ identity

ζ(a)ζ(b) = ζ(a + b). (5)

Proof. Consider n, n′ ∈ Ad+, m, m′ ∈ A<d+, such that sgn(n) = sgn(n′). Define

Sn,m := {(n + θm, n + μm): θ, μ ∈ Fq, θ �= μ} ,

S′
n,m := {(n + θm,m): θ ∈ Fq} ,

n ∼m n′ ↔ n′ = n + θm, for some θ ∈ Fq.

Since degm < d and degn = d, we have sgn(n + θm) = sgn(n). It follows that the 
sets Sn,m’s (equal or disjoint as n, m vary), which are the equivalence classes of ∼m’s, 
partition the set {(n1, n2): ni ∈ Ad+, n1 �= n2, sgn(n1) = sgn(n2)}. On the other hand, 
the sets S′

n,m partition the set {(n1, m1): n1 ∈ Ad+, m1 ∈ A<d+}.
Note that Δd(a, b) = S1 + S2, where

S1 =
∑

ni∈Ad+
sgn(n1) �=sgn(n2)

1
na

1n
b
2
, S2 =

∑
n1 �=n2,ni∈Ad+
sgn(n1)=sgn(n2)

1
na

1n
b
2
.

We claim that S1 = 0.
Let d > 0 divisible by d∞. Letting t = n/m, we have

∑ 1
na

1n
b
2

=
∑ 1

(n + θm)a(n + μm)b

(n1,n2)∈Sn,m θ �=μ∈Fq



J.A. Lara Rodríguez, D.S. Thakur / Finite Fields Appl. 37 (2016) 344–356 351
= 1
ma+b

∑
θ �=μ∈Fq

1
(t + θ)a(t + μ)b

= 1
ma+b

⎛
⎝−

∑
θ∈Fq

1
(t + θ)a −

∑
θ∈Fq

1
(t + θ)b

⎞
⎠

= −
∑
θ∈Fq

1
(n + θm)amb

−
∑
θ∈Fq

1
(n + θm)bma

= −
∑

(x,y)∈S′
n,m

1
xayb

−
∑

(x,y)∈S′
n,m

1
xbya

.

The third equality results from the hypothesis. By summing over the partition, we obtain 
S2 = −Sd(a, b) − Sd(b, a). Since Δd(a, b) = 0 and Sd(a, b) = Sd(b, a) = 0 for d not 
dividing d∞, we get the relation we want, assuming the claim.

Note that this part of the proof is parallel to proof of Theorem 2 in [9], except that 
we restrict to the same sign part. The argument so far has not used any particular form 
of the relation in the hypothesis. But now having proved the relation

∑
θ �=μ∈Fq

1
(n + θm)a(n + μm)b +

∑
θ∈Fq

1
(n + θm)amb

+
∑
θ∈Fq

1
(n + θm)bma

= 0,

formally without using restrictions on n, m, we reuse it by replacing n, m by n1, n2 of 
the same degree, but of different signs. Our claim that S1 = 0 follows by summing over 
the resulting relations.

In more details, first note that by [4, Theorem 5.1] or [3, Corollary 6.4] (4) implies that 
both a, b are “even” (unless a = b and p = 2 when the right side of the equation vanishes, 
but in this case, for the same reason our claimed relation works!). So (q − 1)2S1 gives 
the same sum as S1, except we replace Ad+ in the condition by Ad, making the choice of 
representatives irrelevant. Now the sets {(n1+θn2, n1+μn2), (n1+θn2, n2), (n2, n1+θn2) :
θ �= μ ∈ Fq}, when both components of the tuples are allowed to be multiplied by 
elements in F∗

q , correspond to sets containing (q2 + q)(q−1)2 = (q2 −1)(q2 − q) elements 
representing non-zero vector in two dimensional Fq-vector space by two fixed such n1, 
n2 together with another Fq-linearly independent vector (meaning different sign). They 
partition exactly the set over which we sum, giving the result. �
4. Tuples satisfying the special relations

The numerical evidence with small parameters data calculated suggests that for each 
approach, there are no other relations of the type ‘the product of two zeta values equals 
linear combination of multizetas with Fp-coefficients’ than the ones given in the corre-
sponding Theorems above that survive for infinite places of higher degrees.

We now try to understand all tuples which satisfy these classical sum shuffle or zeta 
product relations. It is enough to restrict to primitive tuples (a, b) with a ≤ b.
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First observe that if p = 2, ζ(a)2 = ζ(2a) = ζ(2a) + 2ζ(a, a), so that (a, a) tuples 
satisfy both special relations!

4.1. Tuples satisfying classical sum shuffle

By Theorem 8 in [7], we know that for F2[t], Δd(a, b) = 0 if and only if a = b.
For general q, we have [8, Theorem 1, p. 2324] a non-exhaustive list of such tuples in 

general. We now try to extend it.
The following formulas, which are consequence of Theorems 1 and 3 in [5], will be 

used in the proof of the theorems in this and next section.

(1) For 1 ≤ s < q and 0 ≤ ki < k with 1 ≤ i ≤ s, we have

Sd(qk −
s∑

i=1
qki) = �

(s−1)qk
d Sd(qk − qk1) · · ·Sd(qk − qks). (6)

(2) For 1 ≤ s ≤ q, and any 0 ≤ ki ≤ k, with 1 ≤ i ≤ s, we have

S<d(
s∑

i=1
(qk − qki)) =

s∏
i=1

S<d(qk − qki). (7)

We also recall Carlitz’ evaluations (see e.g., [8, 3.3.1, 3.3.2])

Sd(a) = 1/�ad, (a ≤ q) (8)

Sd(qj − 1) = �d+j−1/�j−1�
qj

d (9)

S<d(qj − 1) = �d+j−1/�j�
qj

d−1. (10)

Theorem 4.1.1. Let q be any prime power. Consider the following cases.

(1) a + b ≤ q.
(2) n ≥ 0, a = s1q

n and b = qn+1 − s2q
n − 1, with 1 ≤ s1 ≤ s2 ≤ q − 2.

(3) n ≥ 1, 1 ≤ s ≤ q − 1, and a = qn − s, b = qn − (q − s).

If a, b ∈ Z+ satisfy either (1) or (2), then for A = Fq[t] we have the classical sum shuffle

ζ(a)ζ(b) = ζ(a + b) + ζ(a, b) + ζ(b, a).

Proof. (1) Follows [6, Thm. 5.10.6] from equation (8). By Theorem 3.1.1, in each case, it 
is enough to prove Δ(a, b) = 0. Now, since s2−s1 +1 ≤ q−2 < q and s2 +1 ≤ q−1 < q, 
the formula (6) can be applied; keeping in mind that Sd(qn+1 − qn) = �q

n

d /�q
n+1

d , by a 
straight calculation we obtain
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Sd(qn+1 − (s2 − s1)qn − 1) = Sd(s1q
n)Sd(qn+1 − s2q

n − 1),

and (2) is proved. In a similar way, a straight calculation shows that Sd(qn − s)Sd(qn −
(q − s)) and Sd(2qn − q) are equal, proving the claim (3). �
Remark 4.1.2. The numerical evidence suggests that Theorem 4.1.1 completely charac-
terizes the primitive tuples (a, b) with a ≤ b, such that (3) holds, when q = 3.

Numerical evidence suggests the following conjectures.

Conjecture 4.1.3. (i) Let q be any prime power and n ≥ 0. If a = asa+1q
sa+1+ · · ·+anq

n, 
b = bsb+1q

sb+1 + · · · + bnq
n, with −1 ≤ sa, sb ≤ n − 1, 1 ≤ ai, bj ≤ q − 1,

q + j(q − 1) ≤ an + an−1 + · · · + an−j−1, (0 ≤ j ≤ n− sa − 2),

q + j(q − 1) ≤ bn + bn−1 + · · · + bn−j−1, (0 ≤ j ≤ n− sb − 2),

and

an + bn ≤

⎧⎨
⎩

q if sa = sb = n− 1,
q − 2 if sa, sb < n− 1,
q − 1 otherwise

then ζ(a)ζ(b) = ζ(a + b) + ζ(a, b) + ζ(b, a) holds for Fq[t].
(ii) Let q be a prime. If (a, b) satisfies the classical sum shuffle above, then the base q

expansions of a and b have the same length.

Remarks 4.1.4.

(i) By Theorem 1 [8, p. 2324], it follows that if a = anq
n and b = bnq

n, then the classical 
sum shuffle identity holds if an + bn ≤ q. Therefore, the part of Conjecture 4.1.3 (i) 
corresponding to sa = sb = n − 1 is actually proved.

(ii) The numerical evidence suggests that when q is 3 or 5, Theorem 4.1.1 together 
with Conjecture 4.1.3 (i) characterize primitive tuples (a, b) with a ≤ b such that 
the classical sum shuffle holds. For q = 7, the tuple (8, 10) is neither accounted by 
Theorem 4.1.1 nor by Conjecture 4.1.3.

(iii) Conjecture 4.1.3 (ii) does not generalize to non-prime q. For example, take q = 4
with (a, b) = (2, 4), (2, 5) or q = 9, with (a, b) = (3, 9), (3, 10).

4.2. Tuples satisfying zeta product relation

Since S1(k) = S<2(k) −1 = S≤1(k) −1, a straight calculation shows that the condition 
is equivalent to

Δ(a, b) = −S1(a) − S1(b) ⇔ S≤1(a + b) = S≤1(a)S≤1(b). (11)
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As mentioned above, for tuples satisfying this relation, a, b must be “even”. Next, we 
try to understand them.

Theorem 4.2.1. Let q = 2. If a = b, or a = 2β+1 − 2α, b = 2β+1 − 1, for 0 ≤ α ≤ β, then 
(4) holds for F2[t], and therefore ζ(a)ζ(b) = ζ(a + b).

Proof. It is enough to prove Δ1(a, b) = S1(a) + S1(b).
If a = b, by [7, Thm. 8], S1(a)S1(b) = S1(a + b), so that S1(a)S1(b) = S1(a + b) +

S1(a) + S1(b).
For a = 2β+1 − 2α and b = 2β+1 − 1, we apply [3, Corollary 7.2]. We have

a− 1 = 1 + 2 + · · · + 2α−1 + 0 · 2α + 2α+1 + · · · + 2β .

Since 2β+2 − b = 1 + 2β+1 and 2β+2 − a = 2α + 2β+1, from Lucas theorem, we conclude 
that 

(2β+2−b
i

)
and 

(2β+2−a
j

)
are nonzero for i = 0, 1 and j = 0, 2α. Hence,

Δ1(a, b) = S1(a) + S1(a− 1) + S1(b) + S1(b− 2α).

Since a − 1 = b − 2α, the theorem follows. �
Remark 4.2.2. The numerical evidence suggests that for F2[t] the primitive tuples (a, b)
with a ≤ b satisfying relation (4) are characterized by Theorem 4.2.1.

We have the following generalization.

Theorem 4.2.3. Let q be any prime power. Consider the following cases.

(1) Let n ≥ 0, 0 ≤ ki < n, 1 ≤ s ≤ q. Let s1, s2 ≥ 1 such that s = s1 + s2 and let 
a =

∑s1
i=1(qn − qki), b =

∑s2
i=s1+1(qn − qki).

(2) Let

a = s(qn − qk1) + (q − s)(qn − qk2),

b = (q − s)(qn − qk1) + s(qn − qk2),

where n ≥ 0, 1 ≤ s ≤ q, 0 ≤ k1, k2 < n.

If a, b ∈ Z+ satisfy either (1) or (2), then (4) holds for Fq[t], and therefore ζ(a)ζ(b) =
ζ(a + b).

Proof. (1) By Theorem 3.1.1, it is enough to prove that Δ(a, b) = −S1(a) − S1(b); or 
equivalently to prove that S<2(a +b) = S<2(a)S<2(b), but the latter follows immediately 
from (7).
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(2) By (7), we have

S<2(a)S<2(b) = S<d(qn − qk1)sS<2(qn − qk2)q−sS<2(qn − qk1)q−sS<2(qn − qk2)s

= S<2(qn − qk1)qS<2(qn − qk2)q

= S<2(a + b). �
Numerical evidence suggests the following conjectures.

Conjecture 4.2.4. (i) Let a = (q − 1) 
∑m

0 aiq
i, b = (q − 1) 

∑m
0 biq

i, with ai, bi < q

monotonically increasing and am + bm ≤ q. Then (4) holds for Fq[t], and therefore 
ζ(a)ζ(b) = ζ(a + b).

(ii) Let q be a prime. If (a, b) satisfies the zeta product relation above, then a/(q − 1)
and b/(q − 1) have the base q expansion of the same length and the sum of digits base q
of a − 1 and of b − 1 is the same.

Remarks 4.2.5. When q is 3 or 5, Conjecture 4.2.4 (i) and Theorem 4.2.3 account for 
all the primitive tuples (a, b), with a ≤ b, that we know for which (4) holds. For q = 7, 
(54, 66) seems to be the only tuple not accounted for, in the range 1 ≤ a ≤ 250, a ≤ b ≤
300. Conjecture 4.2.4 (ii) does not generalize to non-prime q. For example, both parts 
fail for q = 4 and (a, b) = (6, 12) or (6, 15).

5. Higher depth

We have not yet investigated higher depth situation much numerically or otherwise, 
so will be content to list a couple of almost formal consequences of the depth 2 situation, 
omitting the details.

5.1. Approach 1

The stuffle product of two tuples a = (a1, . . . , ar1) and b = (b1, . . . , br2) of positive 
integers, denoted by st(a, b), is the union of all the tuples c = (c1, . . . , cr) obtained by 
inserting, in any required position, some 0 in the string (a1, . . . , ar1) as well as in the 
string (b1, . . . , br2) (this may be made even before the first term or after the last one), so 
that the two new strings have the same length r, with max{r1, r2} ≤ r ≤ r1 + r2, and by 
adding the two sequences term by term. The 0’s are inserted so that no ci is zero [10].

Theorem 5.1.1. Let a = (a1, . . . , ar1) ∈ Z
r1
+ and b = (b1, . . . , br2) ∈ Z

r2
+ such that 

Δ(ai, bj) = 0 for 1 ≤ i ≤ r1, 1 ≤ j ≤ r2 holds for Fq[t], then for any A with the 
place at infinity of any degree and using sign convention A1, we have

ζ(a)ζ(b) =
∑

c∈st(a,b)

ζ(c).
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Proof. (Sketch) This follows from Theorem 3.3.1 and straightforward calculations. �
5.2. Approach 2

Theorem 5.2.1. Let q be general. Let a1, a2, b ∈ Z+ such that Δ(a1, a2) = −S1(a1) −S1(a2)
and Δ(a1, b) = −S1(a1) − S1(b) hold for Fq[t], then for any A with the place at infinity 
of any degree and using sign convention A2, we have

ζ(a1, a2)ζ(b) = ζ(b, a1, a2) + ζ(a1 + b, a2) − ζ(b, a1 + a2).

Proof. (Sketch) This follows by straight manipulations using Theorem 3.4.1. �
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