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Abstract

We study the dynamics of a SIR epidemic model with nonlinear incidence rate, vertical transmission vaccination for the
newborns and the capacity of treatment, that takes into account the limitedness of the medical resources and the efficiency of
the supply of available medical resources. Under some conditions we prove the existence of backward bifurcation, the stability and
the direction of Hopf bifurcation. We also explore how the mechanism of backward bifurcation affects the control of the infectious
disease. Numerical simulations are presented to illustrate the theoretical findings.
c⃝ 2015 Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS).
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1. Introduction

Mathematical models that describe the dynamics of infectious diseases in communities, regions and countries can
contribute to have better approaches in the disease control in epidemiology. Researchers always look for thresholds,
equilibria, periodic solutions, persistence and eradication of the disease. For classical disease transmission models, it
is common to have one endemic equilibrium and that the basic reproduction number tells us that a disease is persistent
if it is greater than 1, and dies out if it is less than 1. This kind of behavior associates to forward bifurcation. However,
there are epidemic models with multiple endemic equilibria [7,4,11,2], within these models it can happen that a stable
endemic equilibrium coexists with a disease free equilibrium, this phenomenon is called backward bifurcation [6].

In order to prevent and control the spread of infectious diseases like, measles, tuberculosis and influenza, treatment
is an important and effective method. In classical epidemic models, the treatment rate of the infectious is assumed to
be proportional to the number of the infective individuals [1]. Therefore we need to investigate how the application of
treatment affects the dynamical behavior of these diseases. In that direction in [13], Wang and Ruan, considered the
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removal rate

T (I ) =


k, if I > 0
0, if I = 0.

In the following model

d S

dt
= A − d S − λSI,

d I

dt
= λSI − (d + γ )I − T (I ),

d R

dt
= γ I + T (I ) − d R,

where S, I , and R denote the numbers of the susceptible, infective and recovered individuals at time t , respectively.
The authors studied the stability of equilibria and prove the model exhibits Bogdanov–Takens bifurcation, Hopf
bifurcation and Homoclinic bifurcation. In [14], the authors introduced a saturated treatment,

T (I ) =
β I

1 + α I
.

Related works are [15,16,12].
Hu, Ma and Ruan [8] studied the model

d S

dt
= bm(S + R) −

βSI

1 + α I
− bS + pδ I

d I

dt
=

βSI

1 + α I
+ (qδ − δ − γ )I − T (I )

d R

dt
= γ I − bR + bm′(S + R) + T (I ).

(1)

The basic assumptions for the model (1) are, the total population size at time t is denoted by N = S + I + R.
The newborns of S and R are susceptible individuals, and the newborns of I who are not vertically infected are also
susceptible individuals, b denotes the death rate and birth rate of susceptible and recovered individuals, δ denotes the
death rate and birth rate of infective individuals, γ is the natural recovery rate of infective individuals. q (q ≤ 1) is
the vertical transmission rate, and we set p = 1 − q, then 0 ≤ p ≤ 1. Fraction m′ of all newborns with mothers in
the susceptible and recovered classes are vaccinated and appears in the recovered class, while the remaining fraction,
m = 1 − m′, appears in the susceptible class, the incidence rate is described by a nonlinear function βSI/(1 + α I ),
where β is a positive constant describing the infection rate and α is a nonnegative constant. The treatment rate of the
disease is

T (I ) =


k I, if 0 ≤ I ≤ I0
u = k I0, if I > I0,

where I0 is the infective level at which the healthcare systems reach capacity.
In this work we will extend model (1) introducing the treatment rate β2 I

1+α2 I , where α2, β2 > 0, obtaining the following
model

d S

dt
= bm(S + R) −

βSI

1 + α I
− bS + pδ I

d I

dt
=

βSI

1 + α I
+ (qδ − δ − γ )I −

β2 I

1 + α2 I
d R

dt
= γ I − bR + bm′(S + R) +

β2 I

1 + α2 I
.

(2)

Because d N
dt = 0, the total number of population N is constant. For convenience, it is assumed that N = S+ I +R = 1.

By using S+ R = 1− I , the first two equations of (2) do not contain the variable R. Therefore, system (2) is equivalent
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to the following 2-dimensional system:

d S

dt
= −

βSI

1 + α I
− bS + bm(1 − I ) + pδ I

d I

dt
=

βSI

1 + α I
− pδ I − γ I −

β2 I

1 + α2 I
.

(3)

The parameters in the model are described below:

• S, I, R are the normalized susceptible, infected, and recovered population, respectively, therefore it follows that
S, I, R ≤ 1.

• b is a positive number representing the birth and death rates of susceptible and recovered population.
• δ is a positive number representing the birth and death rates of infected population.
• γ is a positive number giving the natural recovery rate of infected population.
• q is positive (q ≤ 1) representing the vertical transmission rate (disease transmission from mother to son before

or during birth). It is assumed that descendants of the susceptible and recovered classes belong to the susceptible
class, in the same way the fraction of the newborns of the infected class not affected by vertical transmission.

• p = 1 − q therefore 0 ≤ p ≤ 1.
• m′ is positive and it is the fraction of vaccinated newborns from susceptible and recovered mothers and therefore

belong to the recovered class. m = 1 − m′
≥ 0 is the rest of newborns, which belong to the susceptible class.

• β is positive, representing the infection rate, α is a positive saturation constant (in the model the incidence rate is
given by the nonlinear function βSI

1+α I ).

•
β2 I

1+α2 I is the treatment function, where α2, β2 > 0.

We note that if α2 = 0 the treatment becomes bilinear, case considered in [8], whereas if β2 = 0 treatment is null,
not being of interest here. Therefore we will assume β2, α2 > 0.

The paper is distributed as follows: in Section 2 we compute the equilibria points and determine the conditions of
its existence (as real values) and positivity, in Section 3 we analyze the stability of the disease free equilibrium and
endemic equilibria points in terms of value of R0 and the parameters of treatment function. Section 4 is dedicated to
study Hopf bifurcation of the endemic equilibria points and Section 5 shows discussion of all our results and we give
some control measures that could be effective to eradicate the disease in each case.

Following [8] we define

R0 :=
βm

β2 + pδ + γ
. (4)

When β2 = 0, R0 reduces to

R∗

0 =
βm

pδ + γ
, (5)

which is the basic reproduction number of model (3) without treatment.

Lemma 1. Given the initial conditions S(0) = S0 > 0, I (0) = I0 > 0, then the solution of (3) satisfies S(t),
I (t) > 0 ∀t > 0 and S(t) + I (t) ≤ 1.

Proof. Take the solution S(t), I (t) satisfying the initial conditions S(0) = S0 > 0, I (0) = I0 > 0. Assume that the
solution is not always positive, i.e., there exists a t0 such that S(t0) ≤ 0 or I (t0) ≤ 0. By Bolzano’s theorem there
exists a t1 ∈ (0, t0] such that S(t1) = 0 or I (t1) = 0, which can be written as S(t1)I (t1) = 0 for some t1 ∈ (0, t0]. Let

t2 = min{ti | S(ti )I (ti ) = 0}. (6)

Assume first that S(t2) = 0, then d S(t2)
dt > 0 implies that S is increasing at t = t2. Hence S(t) is negative for values

of t < t2 near t2, a contradiction. Therefore S(t) > 0 ∀t > 0 and we must have I (t2) = 0, so d I (t2)
dt = 0. Note that

if for some t ≥ 0 I (t) = 0, then d I (t)
dt = 0. Then any solution with I (0) = I0 = 0 will satisfy I (t) = 0 ∀t > 0.

By uniqueness of solutions we have that if I (0) = I0 > 0, then I (t) will remain positive for all t > 0. Therefore
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I (t2) = 0 leads to a contradiction. Hence both S and I are nonnegative for all t > 0. Finally, adding both derivatives
of S(t) and I (t) we get:

d(S + I )

dt
= −bS + bm − bm I − γ I −

β2 I

1 + α2 I
. (7)

Since S, I ≥ 0, if S + I = 1 then 0 ≤ S ≤ 1, 0 ≤ I ≤ 1. Analyzing the expression −bS + bm − bm I , we have that

−bS + bm − bm I = b(m − m I − S) = b(m − m I − 1 + I ) = b(m − 1 + I (1 − m)).

Note that by the definition of the model parameters, 1 − m = m′
≥ 0. Knowing that I ≤ 1, then

I (1 − m) ≤ 1 − m ⇒ I (1 − m) + m − 1 ≤ 0. (8)

Therefore −bS + bm − bm I ≤ 0. Hence d(S+I )
dt ≤ 0 and S + I is non increasing along the line S + I = 1, implying

that S + I ≤ 1. Note also that S + I cannot be greater than 1, otherwise from R = 1 − (S + I ), R would be negative,
a nonsense. �

2. Existence and positivity of equilibria

Assume that system (3) has a constant solution (S0, I0), it is easy to see that E = (m, 0) is the disease free
equilibrium.

Theorem 1. System (3) has a positive disease-free equilibrium E = (m, 0).

In order to obtain positive solutions (S0, I0) of system (3), when I0 ≠ 0 then:

βS0

1 + α I0
− pδ − γ −

β2

1 + α2 I0
= 0

S0 =
1 + α I0

β


pδ + γ +

β2

1 + α2 I0


. (9)

We obtain the following quadratic equation:

AI 2
0 + B I0 + C = 0 (10)

or

I 2
0 + (B/A)I0 + C/A = 0, (11)

where the coefficients are given by:

A = α2(β(γ + bm) + αb(pδ + γ )) > 0,

B = β(γ + β2 + bm(1 − α2)) + bα(pδ + γ + β2) + bα2(pδ + γ ),

= β(γ + β2 + bm − bmα2) + bα(1 − R0)(pδ + γ + β2) + βmbα + bα2(pδ + γ ),

C = b(pδ + γ + β2 − βm) = b(pδ + γ + β2)(1 − R0). (12)

Its roots are:

I1 =
−B −

√
B2 − 4AC

2A

I2 =
−B +

√
B2 − 4AC

2A
. (13)

Using these values in (9) we obtain,

S1 =
1 + α I1

β


pδ + γ +

β2

1 + α2 I1


S2 =

1 + α I2

β


pδ + γ +

β2

1 + α2 I2


. (14)

Then our candidates for endemic equilibria are E1 = (S1, I1), E2 = (S2, I2).
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Fig. 1. Location of the sets A1, A2, A3 in the plane α2 − β2, for γ = 0.01, β = 0.2, b = 0.2, m = 0.3, p = 0.02, δ = 0.1.

Note that C = 0 if and only if R0 = 1, C > 0 if and only if R0 < 1, and C < 0 if and only if R0 > 1.
For R∗

0 > 1 we define the following sets:

A1 = {(β2, α2) : β2 > 0, 0 < α2 ≤ α0
2},

A2 = {(β2, α2) : β2 ≥ g(α2), α2 > α0
2 > 0},

A3 = {(β2, α2) : 0 < β2 < g(α2), α2 > α0
2 > 0} (15)

where

α0
2 =

−β(mbα + γ + bm)

b(pδ + γ − βm)
, (16)

g(α2) = −
1
β

(bα2(pδ + γ − βm) + β(γ + bm + mbα)). (17)

Define:

P1 = 1 +
1

bα(pδ + γ + β2)
[β(γ + β2 + bm − bmα2) + βmbα + bα2(pδ + γ )]

R+

0 = 1 −
1

bα2(pδ + γ + β2)

×


−βα(bmα + β2 + γ + bm − α2bm) + βα2(γ + bm) −


α2(βγ + βbm + αbpδ + αbγ )

2
. (18)

Fig. 1 shows the location of these sets.

Theorem 2. If R0 > 1 the system (3) has a unique (positive) endemic equilibrium E2.

Proof. If R0 > 1 then C < 0, then using Routh–Hurwitz criterion for n = 2, the quadratic equation has two
real roots with different sign, I1 and I2, where I1 < I2. Hence there exists a unique positive endemic equilibrium
E2 = (S2, I2). �

Theorem 3. Let 0 < R0 ≤ 1. For system (3), if R∗

0 ≤ 1 then there are no positive endemic equilibria. Otherwise, if
R∗

0 > 1 the following propositions hold:

1. If R0 = 1 and (β2, α2) ∈ A3 the system (3) has a unique positive endemic equilibrium E2 = (S2, I2), where

I2 = −B/A, S2 =
1 + α I2

β


pδ + γ +

β2

1 + α2 I2


.
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2. If max{P1, R+

0 } < R0 < 1 and (β2, α2) ∈ A3, the system (3) has a pair of positive endemic equilibria E1, E2.

3. If 1 > R0 = R+

0 > P1 and (β2, α2) ∈ A3, the system (3) has a unique positive endemic equilibrium E1 = E2.

4. If 1 > R0 = P1 and (β2, α2) ∈ A3, the system (3) has no positive endemic equilibria.

5. If 0 < R0 ≤ 1 and (β2, α2) ∈ A1 ∪ A2, the system (3) has no positive endemic equilibria.

6. If (β2, α2) ∈ A3 and 0 < R0 < max(R+

0 , P1) < 1, then there are no positive endemic equilibria.

Proof. If 0 < R0 ≤ 1, then C ≥ 0, so the roots of the equation AI 2
+ B I + C = 0 are not real with different sign,

but real with equal signs, complex conjugate or some of them are zero. If endemic equilibria exist and are positive, it
is necessary that B < 0. After some calculations we can see that:

B < 0 ⇔ R0 > 1 +
β(γ + β2 + bm − bmα2) + βmbα + bα2(pδ + γ )

bα(pδ + γ + β2)
:= P1. (19)

From the assumption that R0 ≤ 1 then P1 < 1, hence the expression β(γ +β2 +bm −bmα2)+βmbα+bα2(pδ+γ )

must be negative, this happens if and only if

β2 < −
1
β

(bα2(pδ + γ − βm) + β(γ + bm + mbα)) = g(α2). (20)

If R∗

0 ≤ 1 then −
1
β
(bα2(pδ + γ −βm)+β(γ + bm + mbα)) < 0 and it is not possible to find a value of β2 fulfilling

the previous inequality, therefore there are no positive endemic equilibria.
Now, if R∗

0 > 1 we have that:

1. If R0 = 1 then C = 0, Eq. (10) is transformed into

AI 2
0 + B I0 = 0, (21)

with A > 0. Its roots are I1 = 0 and I2 = −B/A, and there exists a unique endemic equilibrium that is positive if
and only if B < 0, that is given by E2 = (S2, I2), where

I2 = −B/A

S2 =
1 + α I2

β


pδ + γ +

β2

1 + α2 I2


. (22)

Note that if α2 > α0
2 and R∗

0 > 1 then g(α2) > 0.
Hence A3 is nonempty and its elements satisfy B < 0, therefore if (β2, α2) ∈ A3 there exists a unique positive

endemic equilibrium E2.

2. If R0 < 1 then C > 0 and the roots of the quadratic equation for I0 must be real of equal sign or complex
conjugate. By the previous part we know that if (β2, α2) ∈ A3 then P1 < 1, moreover if R0 > P1 then B < 0
and therefore both roots must have positive real part. Finally, to assure that equilibria are both real, we demand that
∆ ≥ 0. Computing ∆:

∆ = B2
− 4AC

= A2 R2
0 + B2 R0 + C2 = ∆(R0), (23)

where:

A2 = α2b2 (pδ + γ + β2)
2 (24)

B2 = −2 [β (γ + β2 + bm (1 − α2)) + α b (pδ + γ + β2) + β mbα

+ bα2 (pδ + γ )]α b (pδ + γ + β2) + 4 α2 (β (γ + bm) α b (pδ + γ ))

× b (pδ + γ + β2) (25)

C2 = (β (γ + β2 + bm (1 − α2)) + α b (pδ + γ + β2) + β mbα + bα2 (pδ + γ ))2

− 4 α2 (β (γ + bm) + α b (pδ + γ )) b (pδ + γ + β2) . (26)
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The previous expression is a quadratic function of R0. To establish the region where ∆ ≥ 0, it is necessary to know
how the roots of ∆(R0) behave. The discriminant of the quadratic function ∆(R0) is

∆2 = −16 α2 b2β (pδ + γ + β2)
2 (β γ + β bm + α bpδ + α bγ )

× (α(αbm + β2 + γ + bm) − α2(γ + bm + αbm)) . (27)

If we assume that ∆2 < 0, then α2 <
α(bmα−β2+γ+bm)

γ+bm+αbm and in this case we have that:

γ + β2 + bm − bmα2 + bmα >
2β2αbm + (γ + bm)(γ + β2 + bm + bmα)

γ + bm + αbm
> 0. (28)

So we get that P1 > 1 > R0, which is a contradiction with the assumption in this part, therefore ∆2 ≥ 0 and in
consequence ∆(R0) has two real roots,

R−

0 =
−B2 −

√
∆2

2A2

= 1 −
1

bα2(pδ + γ + β2)
[


−β(α(bmα + β2 + γ + bm − bmα2) − α2(γ + bm))

+


α2(β(γ + bm) + αb(pδ + γ ))]2,

R+

0 =
−B2 +

√
∆2

2A2

× 1 −
1

bα2(pδ + γ + β2)
[


−β(α(bmα + β2 + γ + bm − bmα2) − α2(γ + bm))

−


α2(β(γ + bm) + αb(pδ + γ ))]2. (29)

Note that due to the positivity of ∆2 and (27), we have that

−β(α(bmα + β2 + γ + bm − bmα2) − α2(γ + bm))

is positive, allowing its roots to be well defined. Analyzing the derivative of ∆(R0) we have that

∆′(R+

0 ) =


∆2 > 0 and ∆′(R−

0 ) = −


∆2 < 0,

moreover R−

0 < R+

0 making ∆ positive for R0 > R+

0 or R0 < R−

0 . Nevertheless

R−

0 = 1 +
1

bα(pδ + γ + β2)
(β(γ + β2 + bm − bmα2 + bmα)) − ϵ,

while

P1 = 1 +
1

bα(pδ + γ + β2)
(β(γ + β2 + bm − bmα2 + bmα)) + ϵ2,

with ϵ, ϵ2 > 0, making R−

0 < P1 < R0. Therefore for R0 > max(P1, R+

0 ), we have that there exist two positive
endemic equilibria E1, E2, proving this part.

3. If (β2, α2) ∈ A3 then P1 < 1. If 1 > R0 > P1, then we have that B < 0 and C > 0, therefore we have a
pair of roots of the quadratic for I with positive real part. In the previous part it was proven that for P1 < 1 the
discriminant ∆2 ≥ 0 and both roots R+

0 , R−

0 are real and less than one. If R0 = R+

0 then ∆ = 0 and both roots are
fused in one I1 = −B/2A = I2. Therefore we have a unique positive endemic equilibrium E1 = E2.

4. If (β2, α2) ∈ A3 then P1 < 1. If R0 = P1 < 1 then C > 0, implying that the roots are complex conjugate or real
of the same sign. Being R0 = P1 then B = 0, implying that both roots have real part equal to zero, therefore there
are no positive endemic equilibria.

5. If 0 < R0 ≤ 1 and (β2, α2) ∈ A1 ∪ A2 then P1 ≥ 1, therefore R0 ≤ P1, B ≥ 0, and C ≥ 0. Hence there are two
roots with real part zero or negative, which are not positive equilibria.

6. If (β2, α2) ∈ A3 we have that P1 < 1 and the roots of the discriminant R+

0 , R−

0 are real, in addition that R−

0 < P1

and R+

0 < 1 by definition of this case. If 0 < R0 < max{R+

0 , P1} < 1, then C > 0 and the roots I2, I3 are complex
conjugate or real with the same sign. If R0 < P1 then B > 0, and the roots have negative real part, so there are
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Fig. 2. Graph of R0 versus the values I of equilibria. Parameter values used are α = 0.4, α2 = 3.8, β = 0.2, b = 0.2, γ = 0.01, δ = 0.01, p =

0.02, m = 0.1. In this example β2 varies from 0 to 0.025, therefore R0 varies between 0.5682 and 1.9682. g(α2) = −0.0017 and α0
2 = 3.8776, so

(β2, α2) ∈ A1 ∪ A2. Forward bifurcation can be observed in R0 = 1.

not positive endemic equilibria. If 0 < R0 < R+

0 and R0 > R−

0 , then ∆ < 0 and the roots are complex conjugate,
therefore there is not real endemic equilibria. If 0 < R0 < R+

0 and R0 ≤ R−

0 < P1, then it reduces to the first case
in which there are not positive endemic equilibria.

Theorem 3 gives us a complete scenario of the existence of endemic equilibria. When R∗

0 ≤ 1 we have that R0 < 1,
it follows from the fact that R0 < R∗

0 whenever β2 > 0; then system (3) has only a disease free equilibrium and no
endemic equilibria.

Otherwise, when R∗

0 > 1, if (β2, α2) ∈ A1 ∪ A2 then we have no endemic equilibria for 0 < R0 < 1 and a unique
endemic equilibrium E2 when R0 > 1, so there exists a forward bifurcation in R0 = 1 from the disease free equilib-
rium to E2 (see Fig. 2). If (β2, α2) ∈ A3 there exist two positive endemic equilibria whenever max{P1, R+

0 } < R0 < 1
(P1 and R+

0 depend on β2), we can observe the backward bifurcation of the equilibrium E to two endemic equilibria
(see Fig. 3).

As an immediate consequence of the previous theorem we have that if R0 > 1 there exists a unique positive
endemic equilibrium, while if R0 < 1 and the conditions of the second part are fulfilled, there exist two positive
endemic equilibria. Hence we have the following corollary: �

Corollary 1. If R0 = 1, R∗

0 > 1 and (β2, α2) ∈ A3, system (3) has a backward bifurcation of the disease-free
equilibrium E.

Proof. First we note that if (β2, α2) ∈ A3 then R+

0 is real less than one and P1 < 1, therefore we can find a
neighborhood of points in the interval (max{R+

0 , P1}, 1). By case 2 of theorem, if R0 lies in this neighborhood there
exist two positive endemic equilibria E1, E2; for R0 = 1 there exists a unique positive endemic equilibrium E2, while
the other endemic equilibrium becomes zero. Finally for R0 > 1 there exists a unique positive endemic equilibrium
as the zero “endemic” equilibrium becomes negative. �

3. Characteristic equation and stability

The characteristic equation of the linearization of system (3) in the equilibrium (S0, I0) is given by:

det(DF − λI ), (30)

where

DF =


∂ f1

∂S

∂ f1

∂ I
∂ f2

∂S

∂ f2

∂ I

 . (31)
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Fig. 3. Graph of R0 versus the values I of equilibria. In this example β2 varies from 0 to 0.025 therefore R0 varies between 0.5682 and
1.9682. Parameter values used are α = 0.4, α2 = 16, β = 0.2, b = 0.2, γ = 0.01, δ = 0.01, p = 0.02, m = 0.1. g(α2) = 0.1188 and
α0

2 = 3.8776, so (β2, α2) ∈ A3. Backward bifurcation can be observed in R0 = 1 and the existence of two positive endemic equilibria whenever

max{P1, R+

0 } < R0 < 1.

Matrix is evaluated in the equilibrium (S0, I0). Functions f1, f2 are the following:

f1 = −
βSI

1 + α I
− bS + bm(1 − I ) + pδ I (32)

f2 =
βSI

1 + α I
− pδ I − γ I −

β2 I

1 + α2 I
. (33)

Computing the matrix DF we obtain:

DF(S, I ) =


−β I

1 + α I
− b

−βS

(1 + α I )2 − bm + pδ

β I

1 + α I

βS

(1 + α I )2 − pδ − γ −
β2

(1 + α2 I )2

 . (34)

3.1. Stability of disease free equilibrium

For the disease free equilibrium E = (m, 0) the Jacobian matrix is:

DF(m, 0) =


−b −βm − bm + pδ

0 βm − pδ − γ − β2


.

Theorem 4. If R0 < 1 then the equilibrium E = (m, 0) of model (3) is locally asymptotically stable, while if R0 > 1
then it is unstable.

Proof. The characteristic equation for the equilibrium E is given by

P(λ) = det(DF(m, 0) − λI2x2)

= det


−b − λ −βm − bm + pδ

0 βm − pδ − γ − β2 − λ


= (−b − λ)(βm − pδ − γ − β2 − λ). (35)

Eq. (35) has two real roots λ1 = −b and λ2 = βm − pδ − γ − β2. By Hartman–Grobman’s theorem, if the roots
of (35) have non-zero real part then the solutions of system (3) and its linearization are qualitatively equivalent. If
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Fig. 4. Global stability of equilibrium E .

both roots have negative real part then the equilibrium E is locally asymptotically stable, whilst if any of the roots has
positive real part the equilibrium is unstable. Clearly λ1 < 0, but λ2 < 0 if and only if

βm − pδ − γ < β2,

if and only if R0 < 1. �

According to the previous theorem and Theorem 3 we obtain the following result for the global stability of
equilibrium E .

Theorem 5. If 0 < R0 < 1 and one of the following conditions holds:

• R∗

0 ≤ 1.
• R0 = P1 and (β2, α2) ∈ A3.
• (β2, α2) ∈ A1 ∪ A2.
• (β2, α2) ∈ A3 and 0 < R0 < max{R+

0 , P1}.

Then equilibrium E of system (3) is globally asymptotically stable.

Proof. If 0 < R0 < 1 then by Theorem 4 the equilibrium E is locally asymptotically stable. If any of the given
conditions holds then by Theorem 3 there are no endemic equilibria in the region D = {S(t), I (t) ≥ 0 ∀t >

0, S(t) + I (t) ≤ 1}, which it was proven to be positively invariant in Lemma 1. By [10, page 245] any solution
of (3) starting in D must approach either an equilibrium or a closed orbit in D. By [9, theorem 3.41] if the solution
path approaches a closed orbit, then this closed orbit must enclose an equilibrium. Nevertheless, the only equilibrium
existing in D is E and it is located in the boundary of D, therefore there is no closed orbit enclosing it, totally
contained in D. Hence any solution of system (3) with initial conditions in D must approach the point E as t tends to
infinity. �

Example 1. Take the following values for the parameters: α = 0.4, α2 = 10, β = 0.2, b = 0.2, γ = 0.01, δ =

0.01, p = 0.02, m = 0.3, β2 = 0.1. Equilibrium E = (0.3, 0), R0 = 0.5445 < 1. By Theorem 4, E is locally
asymptotically stable, α0

2 = 7.42 < α2 and g(α2) = −0.1864 < β2, therefore (β2, α2) ∈ A2. By Theorem 3 there are
no positive endemic equilibria. Finally by Theorem 5 we have that E is globally stable. See Fig. 4.

Theorem 6. If R0 = 1 and β2 ≠ g(α2) then equilibrium E is unstable. It is a transcritical bifurcation point.
Moreover, if (β2, α2) ∈ A1 ∪ A2 the region D = {S(t), I (t) ≥ 0 ∀t > 0, S(t) + I (t) ≤ 1}, previously defined in the
proof of Theorem 5, is contained in the stable manifold of E.
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Proof. If R0 = 1 one of the eigenvalues of the Jacobian matrix of the system is zero, hence we cannot apply
Hartman–Grobman’s theorem. In order to establish the stability of equilibrium E we apply central manifold theory.
Making the change of variables, Ŝ = S − m, Î = I , we obtain the equivalent system

d Ŝ

dt
= −

β(Ŝ + m) Î

1 + α Î
− bŜ − bm Î + pδ Î

d Î

dt
=

β(Ŝ + m) Î

1 + α Î
− pδ Î − γ Î −

β2 Î

1 + α2 Î
. (36)

Because Î = I we ignore the hat and use only I . This new system has an equilibrium in Ê = (0, 0) and its Jacobian
matrix in that point is

DF(m, 0) =


−b −βm − bm + pδ

0 0


. (37)

Using change of variables S = u −
(γ+beta2+bm)v

b , I = v and βm = pδ + γ + β2 we obtain the equivalent system
(see Appendix A):

dv

dt
= 0u + f (v, u)

du

dt
= −bu + g(v, u), (38)

where f and g are defined in Appendix A.
By [3], system (3) has a center manifold of the form u = h(v) and the flow in the center manifold (and therefore

in the system) is given by the equation

v′
= f (v, h(v)) ∼ f (v, φ(v)),

where h(v) = a0v
2

+ a1v
3

+ O(v4), and ai ’s are given in Appendix A. Expanding the Taylor series of f we obtain
the flow equation

v′
= −

b3β m + b2β2m + b3γ α2 − b2β pδ + b3α β m + b3 pδ α2 − b3β mα2

b3 v2
+ O(v3)

= Hv2
+ O(v3). (39)

Therefore the dynamics of solutions near the equilibrium Ê = (0, 0) is given by the quadratic term, whenever this
term is not zero. We note that H = 0 if and only if

α2 =
−β(bm + βm − pδ + bαm)

b(pδ + γ − βm)
. (40)

Substituting again R0 = 1, expressed as βm = pδ + γ + β2, we obtain H = 0 if and only if β2 = g(α2).
If (β2, α2) ∈ A3 then H > 0. v′ > 0 for v ≠ 0. If (β2, α2) ∈ A1 ∪ A2 then H < 0, v′ < 0 for v ≠ 0. In both cases

Ê is unstable. Moreover, if (β2, α2) ∈ A1 ∪ A2 then H < 0 and v′ < 0 for v > 0. Recalling v(t) = I (t) we have
under this assumption that I ′(t) < 0 for I > 0 therefore I (t) → 0+, while as v1 = (1, 0) is the stable direction of the
point E then S(t) → 0, therefore the solutions in the region D approach the equilibrium E as t → ∞.

Remark. When R0 = 1 we have the attractor direction in the x axis, but in direction of y axis the equilibrium is
neither attractor or repulsor, so E is unstable but it is not a saddle point. In this case it is a transcritical bifurcation
point. �

Example 2. Take the following values for the parameters: β = 0.2, α = 0.4, δ = 0.01, γ = 0.01, α2 = 10, m =

0.3, p = 0.02, b = 0.2, β2 = 0.0498. In this case R0 = 1, α0
2 = 1.8876 and g(α2) = 0.4040, hence (β2, α2) ∈ A3.

By the first case of Theorem 3 the system has a unique endemic equilibrium in S2 = 0.11210, I2 = 0.4781. By
Theorem 6 the equilibrium E is a transcritical bifurcation point, see Fig. 5.
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Fig. 5. Phase plane of the system for R0 = 1 with (β2, α2) ∈ A3.

Example 3. If we take the same values as in the previous example except α2 = 2, then g(α2) = 0.0056 < β2, hence
(β2, α2) ∈ A2. By Theorem 3 the system has no endemic equilibria, and by Theorem 6 the point E is a transcritical
bifurcation point. Moreover, the region D is totally contained in the stable manifold, see Fig. 6.

3.2. Stability of endemic equilibria

The general form of the Jacobian matrix is

DF =

−
β I

1 + α I
− b −

βS

(1 + α I )2 − bm + pδ

β I

1 + α I

βS

(1 + α I )2 − pδ − γ −
β2

(1 + α2 I )2

 . (41)

Therefore the characteristic equation for an endemic equilibrium is

P(λ) =


−

β I

1 + α I
− b − λ


βS

(1 + α I )2 − pδ − γ −
β2

(1 + α2 I )2 − λ


−


β I

1 + α I


−

βS

(1 + α I )2 − bm + pδ


. (42)

Denote:

C I :=
β I

1 + α I
(43)

CS :=
βS

(1 + α I )2 (44)

DI :=
β2

(1 + α2 I )2 . (45)

Then the characteristic polynomial is rewritten as

P(λ) = λ2
+ Wλ + U (46)

where:

W = C I + b − CS + pδ + γ + DI (47)

U = C I γ + C I DI − bCS + bpδ + bγ + bDI + C I bm. (48)
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By Routh–Hurwitz criteria for n = 2 if the coefficient W and the independent term U are positive then the roots
of the characteristic equation have negative real part and therefore the endemic equilibrium is locally asymptotically
stable. Note that whenever the equilibria are positive, C I , CS, DI will be positive as well. Let us analyze the stability
according to the value of R0.

Theorem 7. Whenever the equilibrium E1 exists it is a saddle and therefore unstable.

Proof. Consider E1 = (S1, I1) and its characteristic polynomial (46). By Routh–Hurwitz criterion for quadratic
polynomials, its roots have negative real part if and only if U > 0 and W > 0, where U, W depend on E1. Moreover,
when U < 0 its roots are both real with different sign and when U > 0 and W < 0 the roots have positive real part.
Computing the value of U and expressing S1 in terms of I1 we obtain

U =
I1(a1 I 2

1 + b1 I1 + c1)

(1 + α I1)(1 + α2 I1)2 =
I1 F(I1)

(1 + α I1)(1 + α2 I1)2 (49)

where:

a1 = α2
2(βγ + bpαδ + bαγ + bmβ) = α2 A > 0,

b1 = 2α2(βγ + bpαδ + bαγ + bmβ) = 2A > 0,

c1 = ββ2 + bmβ + bpαδ + bαβ2 + βγ − bα2β2 + bαγ = B − α2C. (50)

We are assuming that equilibrium E1 exists and it is positive, and this happens (by previous section) when B < 0 and
C > 0, so c1 < 0. The sign of U is equal to sgn(F(I1)). F(I1), has two roots of the form:

I∗ =

−b1 +


b2

1 − 4a1c1

2a1
(51)

I ∗ ∗ =

−b1 −


b2

1 − 4a1c1

2a1
(52)

where b2
1 − 4a1c1 > 0 and therefore I∗ and I ∗ ∗ are both real values with I ∗ ∗ < 0. F(I1) > 0 for I1 > I∗ and

I1 < I ∗ ∗, but second condition never holds because I1 > 0, so F(I1) < 0 for 0 < I1 < I∗.
Computing I∗ in terms of A, B, C :

I∗ = −
1
α2

+
1

α2 A


(A2 − α2 AB + α2

2 AC). (53)
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Substituting ∆ = B
2
− 4AC > 0

I∗ = −
1
α2

+
1

α2 A

A2 − α2 AB +
α2

2

4
(B2 − ∆)



= −
1
α2

+
1

2α2 A


(2A − α2 B)2 − α2

2∆

> −
1
α2

+
1

2α2 A


(2A − α2 B)2 −


α2

2∆


=
−B −

√
∆

2A
= I1. (54)

Therefore U < 0 and the equilibrium E1 is a saddle. �

Theorem 8. Assume the conditions of Theorem 3 for existence and positivity of the endemic equilibrium E2. Let
a1, b1, c1 defined by Eqs. (50).

• If b2
1 − 4a1c1 < 0, then E2 is unstable for s < 0 and locally asymptotically stable for s > 0.

• If b2
1 − 4a1c1 ≥ 0, E2 is locally asymptotically stable for I2 > I∗ and s > 0, whereas that it is unstable for

I2 < I∗ or I2 > I∗ and s < 0.

With s = m1(−B +
√

B2 − 4AC) + 2Am2,

m1 = (r + β2α − β2α2 + 2bα2)A2
− α2

2r AC − ABα2(bα2 + 2r) + B2α2
2r,

m2 = bA2
− ACα2(bα2 + 2r) + α2

2r BC,

r = α(pδ + b + γ ) + β. (55)

Proof. Consider E2 = (S2, I2) be real and positive, and its characteristic polynomial (46). We will have that the
equilibrium is unstable when U < 0 or U > 0, W < 0, and locally asymptotically stable when U > 0, W > 0.
Following the previous proof

U =
I2(a1 I 2

2 + b1 I2 + c1)

(1 + α I2)(1 + α2 I2)2 =
I2 F(I2)

(1 + α I2)(1 + α2 I2)2 (56)

where a1, b1, c1 are the same as in previous theorem. Therefore sgn(U ) = sgn(F(I2)). We have seen that F(I2) has
two roots I∗ and I ∗ ∗.

• If b2
1 − 4a1c1 < 0 the roots are not real, so F(I2) has a single sign for all values of I2 and sgn(F(I2)) = sgn(c1) =

sgn(B − α2C). Using the fact that

b2
1 − 4a1c1 = 4A(A − Bα2 + α2

2C) < 0, (57)

we can obtain that c1 > 0, so U > 0. Now,

W =
1

(1 + α I2)(1 + α2 I2)2 [α2
2 (α γ + bα + β + α pδ) I2

3

+ α2 (bα2 + 2 α pδ + 2 bα + 2 α γ + 2 β) I2
2

+ (α pδ + bα + β + α β2 − β2 α2 + α γ + 2 bα2) I2 + b]

=
G(I2)

(1 + α I2)(1 + α2 I2)2 . (58)

By using the division algorithm,

G(I2) = (AI 2
2 + B I2 + C)P(I2)

+
1

A2 [((r + β2α − β2α2 + 2bα2)A2
− α2

2r AC − ABα2(bα2 + 2r) + B2α2
2r)I2
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Fig. 7. Phase plane with three equilibria.

+ bA2
− ACα2(bα2 + 2r) + α2

2r BC],

= (AI 2
2 + B I2 + C)P(I2) +

m1 I2 + m2

A2 (59)

where P(I2) is a polynomial in I2 of degree one. Being I2 a coordinate of an equilibrium then AI 2
2 + B I2 + C = 0

and

G(I2) =
m1 I2 + m2

A2 .

Hence sgn(W ) = sgn(G(I2)) = sgn(
m1 I2+m2

A2 ) = sgn(m1 I2 + m2). Substituting the value of I2,

m1 I2 + m2 =
m1

2A
(−B +


B2 − 4AC) + m2.

It follows that sgn(m1 I2 + m2) = sgn(m1(−B +
√

B2 − 4AC) + 2Am2) = sgn(s). Therefore E2 is unstable if
s < 0 and locally asymptotically stable if s > 0.

• When b2
1 − 4a1c1 ≥ 0, we have two real roots I∗, I ∗ ∗ of F(I2). As we saw in the proof of previous theorem,

F(I2) > 0 for I2 > I∗ and I2 < I ∗ ∗ (which does not hold because I ∗ ∗ < 0), and F(I2) < 0 for 0 < I2 < I∗.
So, if 0 < I2 < I∗ the equilibrium E2 is unstable.

When I2 > I∗ then U > 0 and the sign of W depends on the sign of s, therefore the equilibrium is locally
asymptotically stable for s > 0 and unstable for s < 0. �

Example 4. In Fig. 7 we show an example with three equilibria points: E, E1 and E2. The parameters used are fixed
as in Fig. 3, and β2 = 0.013. We can see that, in fact, E1 is a saddle, while E and E2 are stable.

4. Hopf bifurcation

By previous section we know that the system (3) has two positive endemic equilibria under the conditions of
Theorem 3. Equilibrium E1 is always a saddle, so its stability does not change and there is no possibility of a Hopf
bifurcation in it. So let us analyze the existence of a Hopf bifurcation of equilibrium E2 = (S2, I2). Analyzing the
characteristic equation for E2, it has a pair of pure imaginary roots if and only if U > 0 and W = 0.

Theorem 9. Suppose the existence and positivity of the endemic equilibrium E2, and one of the following conditions:

• b2
1 − 4a1c1 < 0,

• b2
1 − 4a1c1 ≥ 0, I2 > I∗.
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Let s be defined as in Theorem 8. System (3) undergoes a Hopf bifurcation of the equilibrium E2 at s = 0. Moreover, if
ā2 < 0, there is a family of stable periodic orbits of (3) as s decreases from 0; if ā2 > 0, there is a family of unstable
periodic orbits of (3) as s increases from 0.

Proof. The characteristical polynomial for E2 has a pair of pure imaginary roots iff U > 0 and W = 0. From the
proof of Theorem 8 we have that U > 0 if and only if b2

1 − 4a1c1 < 0 or b2
1 − 4a1c1 ≥ 0 and I2 > I∗.

Although, sgn(W ) = sgn(s), so W = 0 if and only if s = 0. By first part of theorem 3.4.2 of [5] the roots λ and λ̄

of (46) for E2 vary smoothly, so we can affirm that near s = 0 these roots are still complex conjugate and

dRe(λ(s))

ds


s=0

=
d

ds


1
2

W (s)


=

1
2

d

ds


s

2A3(1 + α I2)(1 + α2 I2)2


=

1

4A3(1 + α I2)(1 + α2 I2)2 ≠ 0. (60)

Therefore s = 0 is the Hopf bifurcation point for (3).
To analyze the behavior of the solutions of (3) when s = 0 we make a change of coordinates to obtain a new

equivalent system to (3) with an equilibrium in (0, 0) in the x–y plane (see Appendix B). Under this change the
system becomes:

dx

dt
=

a11x + a12 y + c1xy + c2 y2

1 + αy + α I2
,

dy

dt
=

a21x + a22 y + c3xy + c4xy2
+ c5 y2

+ c6 y3

(1 + αy + α I2) (1 + α2 y + α2 I2)
(61)

where the ai j ’s and ci ’s are defined in Appendix B.
System (61) and (3) are equivalent (Appendix B), so we can work with (61). This system has a pair of pure

imaginary eigenvalues if and only if (3), has them too. Computing Jacobian matrix DF(0, 0) of (61)

DF(0, 0) =


a11

1 + α I2

a12

(1 + α I2)
a21

(1 + α2 I2) (1 + α I2)

a22

(1 + α2 I2) (1 + α I2)

 . (62)

Tr(DF(0, 0)) = Tr(D f (S2, I2)), det(DF(0, 0)) = det(D f (S2, I2)).

So condition W = 0 is equivalent to a11(1 + α2 I2) + a22 = 0 and U > 0 equivalent to a22a11 − a12a21 > 0.
System (61) can be rewritten as

dx

dt
=

a11x

1 + α I2
+

a12 y

1 + α I2
+ G1(x, y) (63)

dy

dt
=

a21x

(1 + α I2) (1 + α2 I2)
+

a22 y

(1 + α I2) (1 + α2 I2)
+ G2(x, y) (64)

where G1, G2 are defined in Appendix B.
Let Λ =

√
det(DF(0, 0)). We use the change of variable u = x, v =

a11
Λ(1+α I2)

+
a12 y

Λ(1+α I2)
, to obtain the following

equivalent system:
u
v


=


0 Λ

−Λ 0


u
v


+


H1(u, v)

H2(u, v)


(65)

where

H1(u, v) = −
((−a12c1 + a11c2) u + (−Λc2α I2 + Λa12α − Λc2) v) ((Λ + Λα I2) v − a11u)

a12


αΛ + Λα2 I2

v + a12 − αa11u + a12α I2

 (66)
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Fig. 8. Existence of a limit cycle in the phase plane. The parameters used are β = 0.2, α = 0.8, γ = 0.01, δ = 0.03, b = 0.01, p =

0.2, m = 0.9, α2 = 21, β2 = 0.15. In this case we have that R0 = 1.0843373493975903614 > 1, so we have a single endemic equilibrium
E2 = (0.51579943753899313111, 0.037237521747155859148). b2

1 − 4a1c1 = 0.002078697600 > 0, I∗ = −0.034459056594790116219 < I2,
so we have a Hopf bifurcation at s = 0, moreover and s = −0.000061701527663761846660 and we can observe the limit cycle around E2.

H2(u, v) = −
1

h(u, v)


(Λ(1 + α I2)v − a11u)


A1v

2
+ A2uv + A3v + A4u2

+ A5u


, (67)

and A1, . . . , A5, h(u, v) are defined in Appendix B. Let

ā2 =
1

16
[(H1)uuu + (H1)uvv + (H2)uuv + (H2)vvv] +

1
16(−Λ)

[(H1)uv((H1)uu + (H1)vv)

− (H2)uv((H2)uu + (H2)vv) − (H1)uu(H2)uu + (H1)vv(H2)vv] (68)

where

(H1)uuu =
∂

∂u


∂

∂u


∂ H1

∂u


(0, 0),

and so on (ā2 is explicitly expressed in Appendix B).
Then by theorem 3.4.2 of [5] if ā2 ≠ 0 then there exists a surface of periodic solutions, if ā2 < 0 then these cycles

are stable, but if ā2 > 0 then cycles are repelling (See Fig. 8). �

5. Discussion

As we said in the introduction, traditional epidemic models have always stability results in terms of R0, such that
we need only reduce R0 < 1 to eradicate the disease. However, including the treatment function brings new epidemic
equilibria that make the dynamics of the model more complicated. Now, let us discuss some control strategies for the
infectious disease, analyzing the parameters of the treatment function (α2, β2) and looking for conditions that allow
us to eliminate the disease. We make this study by cases.

A first approach is focused on the definition of R0, we can see that R0 decreases when β2 increases, so the first
measure suggesting control is a big value for β2. But this is not always a good way to proceed. Let us divide our
analysis in the following cases:

Case 1: There is no positive endemic equilibrium for R0 ≤ 1. This happens when R∗

0 ≤ 1 (by Theorem 3) or when
R∗

0 > 1 and (α2, β2) ∈ A1 ∪ A2 (Theorem 3, number 5). In this case if R0 > 1 there is a unique positive endemic
equilibrium, therefore there exists a bifurcation at R0 = 1: from the disease free equilibrium, which is globally
asymptotically stable for 0 < R0 < 1 (by Theorem 4) and unstable for R0 = 1 and β2 ≠ g(α2) (Theorem 6), to
the positive endemic equilibrium E2 as R0 increases. E2 will be locally asymptotic stable or unstable depending on
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Fig. 9. Bifurcation diagram in terms of β2 and α2. The values of the parameters taken are α = 0.4, β = 0.3, b = 0.2, γ = 0.03, δ = 0.05, p =

0.3, m = 0.3. Here R0 < R+

0 inside the solid curve (R0 = R+

0 ) and R0 > R+

0 outside it, whenever (β2, α2) is in its domain (under the long
dashed line “root=0”). R0 < 1 above the dot-lined line and R0 > 1 under it; R0 < P1 above the dotted line and R0 > P1 under that one.
The areas A1, A2, A3 are delimited by the dashed line g = 0 and α2 = 3.8. In this case the endemic equilibria E1 and E2 exist both in the area
delimited by the line R0 = 1 and the dotted line R0 = P1, while E2 exists by itself under the line R0 = 1.

Theorem 8 or surrounded by a limit cycle (Theorem 9). If conditions for Hopf bifurcation hold then the stability of
the limit cycle is determined by ā2; when ā2 < 0 the periodic orbit is stable and therefore E2 is unstable, while if
ā2 > 0 then the periodic orbit is unstable and E2 is stable. In this case the best way to eradicate the disease is finding
parameters that allow R0 < 1, because then all the infectious states tend to I = 0.

Case 2: There exist endemic equilibria for R0 ≤ 1. This happens when (α2, β2) ∈ A3. The existence of
endemic equilibria is determined by the relationship between R0 and max{P1, R+

0 }. Let F(α2, β2) = R0 − R+

0 ,
G(α2, β2) = R0 − P1, and focus on the implicit curves defined by F = 0 and G = 0. These curves divide the domain
A3 in another ones (see Fig. 9):

A1
3 = {(α2, β2) ∈ A3, 0 < R0 < R+

0 }

A2
3 = {(α2, β2) ∈ A3, R0 > R+

0 }

A3
3 = {(α2, β2) ∈ A3, 0 < R0 < P1}

A4
3 = {(α2, β2) ∈ A3, R0 > P1}. (69)

If (α2, β2) ∈ A2
3 ∩ A4

3 then there exist two endemic equilibria E1 (a saddle) and E2 (stable or unstable depending
on conditions of Theorem 8 and possibly with a periodic orbit around (Theorem 9)), but when R0 = 1 one of them
becomes negative, leaving us with E2. In this case R0 < 1 is not a sufficient condition to control the disease, because
even with R0 < 1 we have endemic positive equilibria that could be stable and then the disease will tend to a non zero
value; also we have the possibility of a periodic solution, or biologically, an outbreak that will apparently “disappear”
but will re-emerge after some time.

The best way in this case is ensuring (α2, β2) ∈ (A2
3 ∩ A4

3)
c because then we do not have endemic equilibria for

R0 < 1 and the disease free will be globally asymptotically stable.
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Appendix A. Computing center manifold

The Jacobian matrix of system (36) is

DF(m, 0) =


−b −βm − bm + pδ

0 0


. (A.1)

With eigenvalues λ1 = −b and λ2 = 0 and respective eigenvectors v1 = (1, 0) and v2 = (−
γ+β2+bm

b , 1). Using the
eigenvectors to establish a new coordinate system we define:


Ŝ
I


=

1 −
γ + β2 + bm

b
0 1

u
v


, or


u
v


=

1
γ + β2 + bm

b
0 1

S
I


. (A.2)

Under this transformation the system becomes

du

dt
=

d

dt
Ŝ (t) +

(γ + β2 + bm) d
dt I (t)

b

= −

β


Ŝ + m


I

1 + α I
− bŜ − bm I + pδ I + (γ + β2 + bm)

×

β


Ŝ + m


I

1 + α I
− (pδ + γ ) I −

β2 I

1 + α2 I

 1
b
,

dv

dt
=

d I

dt
(A.3)

=

β


Ŝ + m


I

1 + α I
− (pδ + γ ) I −

β2 I

1 + α2 I
. (A.4)

Substituting S = u −
(γ+β2+bm)v

b , I = v and βm = pδ + γ + β2 we obtain:

dv

dt
= 0u + f (v, u)

du

dt
= −bu + g(v, u), (A.5)

where

f (u, v) = −
v (−β b − β bα2 v) u

(1 + α v) (1 + α2 v) b

−
v

(1 + α v) (1 + α2 v) b


β bmα2 + bγ α α2 − β α2 pδ + bpδ α α2 + β2α2 m


v2

+


bpδ α2 + β bm − β bmalpha2 + bγ α2 + β2m − β pδ + bα β m


v


,

g(u, v) = −
1

(1 + α v) (1 + α2 v) b2 [v((mb2γ α α2 + 2 β2bm2α2 + β α2 p2δ2

+ β3α2 m2
− bγ pδ α α2 + bγ α α2 β m − 2 β2α2 mpδ + bpδ α α2 β m

− b2mα α2 β − β2bmα2 + b2m2β α2 + b2mpδ α α2 − bp2δ2α α2

− 2 β bmα2 pδ − b2mβ α2 + bβ α2 pδ)v2
+ (b2m2β − 2 β bmpδ − β b2m + 2 β2bm2

− β2bm + β p2δ2
+ 2 β bmα2 pδ − bpδ α β m + β3m2

+ β bpδ − b2α β m − 2 β2mpδ

+ b2m2α β + bα β2m2
− uβ b2mα2 − bβ2uα2m + bβ uα2 pδ − γ bpδ α2 + γ β bmα2
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+ b2mpδ α2 − b2m2β α2 + uβ b2α2 − bp2δ2α2 − β2bm2α2 + b2mγ α2)v − b2mβ u

+ uβ b2
− bβ2um + bβ upδ)]. (A.6)

By [3] the system (A.5) has a center manifold of the form u = h(v). Let φ : R → R and define the annihilator:

Nφ = φ′(v)( f (v, φ(v))) + bφ − g(v, φ(v))

=
1

b2(1 + αv)(1 + α2v)
[bpδ α v3α2β m + b2m2β v2

− β v2b2m + b3φ + b3φ α v

+ b3φ α2v + b2mγ α2 v2
+ φ β vb2

+ vbφ β pδ + b2mpδ α2v
2
− φ β v2b2mα2

− γ bpδ α2v
2
+ b2mγ α v3α2 + γ β v2bmα2 + b2m2α v2β − 2 β2v2mpδ − β2v2bm2α2

+ β v2bpδb2v2α β m + bα v2β2m2
− bpδ α v2β m + β3v2m2

− 2 β v2bmpδ + β3v3α2m2

+ 2 β2v2bm2
+ β v2 p2δ2

− β2v2bm − φ β vb2m − vbφ β2m + β v3bα2 pδ − b2v3α α2β m

− bp2δ2α v3α2 − 2 β2v3α2mpδ + φ β v2b2α2 − b2m2β v2α2 + b2m2β v3α2 − β v3b2mα2

− β2v3bα2m + 2 β2v3bm2α2 − bp2δ2v2α2 + β v3α2 p2δ2
+ b3φ α v2α2 − v2bφ β2mα2

+ v2bφ β pδ α2 + bγ α v3α2β m + b2mpδ α v3α2 − γ bpδ α v3α2 − 2 β v3bmα2 pδ

+ 2 β v2bmα2 pδ]. (A.7)

Assume that φ = a0v
2
+ a1v

3
+ O(v4), then by substituting φ and dφ

dv
in the annihilator Nφ and expanding its Taylor

series we get:

Nφ =
1

b2


(γ β bmα2 + b2mpδ α2 − b2m2β α2 + 2 β bmα2 pδ + 2 β2bm2

+ b2m2β

− β b2m + b3a0 − β2bm2α2 − 2 β bmpδ + b2mγ α2 − γ bpδ α2 − b2α β m − β2bm

+ vbα β2m2
+ b2m2α β − 2 β2mpδ + β p2δ2

− bpδ α β m − bp2δ2α2 + β bpδ

+ β3m2)v2
−

1

b2 [α β3m2
− a0 β b2

− b3a1 − 2 bpδ α β m − β2bm2α2
2
− bp2δ2α2

2

+ mb2γ α2
2
− b2m2β α2

2
− b2α β m − b2α2β m − α β2bm + bα2β2m2

+ b2m2α2β

+ α β p2δ2
+ 3 a0 β b2m + 3 a0 bβ2m + 2 a0 b2γ α2 + 2 a0 b2 pδ α2 − 2 a0 β b2mα2

− 3 a0 bβ pδ + 2 a0 b2α β m − 2 α β2mpδ + α β bpδ + b2mpδ α2
2
+ bγ α2

2β m

− bγ pδ α2
2
+ 2 β bmα2

2 pδ − bpδ α2β m + b2m2α β + 2 bα β2m2
]v3

+ O(v4)


. (A.8)

By choosing the coefficients of v2 and v3 in order to have Nφ = O(v4) we obtain that a0 and a1 must be the
following:

a0 = −
1

b3 [b2m2β + β bpδ − b2α β m + b2mpδ α2 − γ bpδ α2 + γ β bmα2 − 2 β bmpδ

− β b2m + 2 β2bm2
− β2bm + β p2δ2

+ 2 β bmα2 pδ − bpδ α β m + β3m2
− bp2δ2α2

− b2m2β α2 − 2 β2mpδ + b2mγ α2 + bα β2m2
+ b2m2α β − β2bm2α2], (A.9)

a1 =
1

b3 [α β3m2
− ao β b2

− 2 bpδ α β m − β2bm2α2 − bp2δ2α2
2
+ mb2γ α2

2 − b2m2βα2
2

− b2α β m − b2α2β m − α β2bm + bα2β2m2
+ b2m2α2β + α β p2δ2

+ 3 a0 β b2m

+ 3 a0 bβ2m + 2 a0 b2γ α2 + 2 a0 b2 pδ α2 − 2 a0 β b2mα2 − 3 a0 bβ pδ + 2 a0 b2α β m
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− 2 α β2mpδ + α β bpδ + b2mpδ α2
2
+ bγ α2

2β m − bγ pδ α2
2
+ 2 β bmα2

2 pδ

− bpδ α2β m + b2m2α β + 2 bα β2m2
]. (A.10)

Hence h(v) = a0v
2
+ a1v

3
+ O(v4).

Appendix B. Hopf bifurcation

To analyze the behavior of the solutions of (3) when s = 0 we make a change of coordinates x = S−S2, y = I − I2,
to obtain a new equivalent system to (3) with an equilibrium in (0, 0) in the x–y plane. Under this change the system
becomes in:

dx

dt
=

a11x + a12 y + c1xy + c2 y2
+ c7

1 + αy + α I2
,

dy

dt
=

a21x + a22 y + c3xy + c4xy2
+ c5 y2

+ c6 y3
+ c8

(1 + αy + α I2) (1 + α2 y + α2 I2)
(B.1)

where:

a11 = −b − β1 I2 − bα I2 (B.2)

a12 = −2 bmα I2 + bmα − bαS2 + 2 pδ α I2 + pδ − bm − β1S2 (B.3)

c1 = −bα − β1 (B.4)

c2 = −bmα + pδ α (B.5)

a21 = −I2 (−β1 − β1α2 I2) (B.6)

a22 = −2 pδ α I2 + 2 β1α2S2 I2 − 3 pδ αα2 I2
2
− 2 γ α I2

− 2 γ α2 I2 − 2 pδ α2 I2 − 2 β2α I2 − 3 γ αα2 I2
2
− γ − pδ − β2 + β1S2 (B.7)

c3 = 2 β1α2 I2 + β1 (B.8)

c4 = β1α2 y2 (B.9)

c5 = −3 pδ αα2 I2 − 3 γ αα2 I2 − pδ α + β1α2S2 − γ α − γ α2 − pδ α2 − β2α (B.10)

c6 = −pδ αα2 − γ αα2 (B.11)

c7 = −(β1S2 I2 − bmα I2 + bS2 − pδ I2 − pδ α I2
2
+ bαS2 I2 + bm I2 − bm + bmα I2

2) (B.12)

c8 = −I2[pδ α I2 + pδ + pδ α2 I2 + γ α2 I2 − β1α2S2 I2 + γ α I2 + β2α I2

+ γ + γ αα2 I2
2
− β1S2 + β2 + pδ αα2 I2

2
]. (B.13)

But from the equations for the equilibrium point we can prove that c7 = c8 = 0, so the system we will work on is

dx

dt
=

a11x + a12 y + c1xy + c2 y2

1 + αy + α I2
,

dy

dt
=

a21x + a22 y + c3xy + c4xy2
+ c5 y2

+ c6 y3

(1 + αy + α I2) (1 + α2 y + α2 I2)
. (B.14)

If we denote system (3) as (S, I )′ = f (S, I ) and system (B.1) as (x, y)′ = F(x, y), f = ( f1, f2), F = (F1, F2) then

F(x, y) = f (x + S2, y + I2),

and

∂ Fi

∂x
(x, y) =

∂ fi

∂S
(x + S2, y + I2)

∂S

∂x
(x, y) +

∂ fi

∂ I
(x + S2, y + I2)

∂ I

∂x
(x, y) =

∂ fi

∂S
(x + S2, y + I2)

∂ Fi

∂y
(x, y) =

∂ fi

∂S
(x + S2, y + I2)

∂S

∂y
(x, y) +

∂ fi

∂ I
(x + S2, y + I2)

∂ I

∂y
(x, y) =

∂ fi

∂S
(x + S2, y + I2).
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So, the Jacobian matrix of (61) DF(0, 0) in the equilibrium is equal to the Jacobian matrix of system (3) D f (S1, I1).
We can also compute the partial derivatives of system (B.1) and (61) to prove that they are equal, i.e.,

D f (S2, I2) = DF(0, 0). (B.15)

Therefore the system (61) and (3) are equivalent and we can work with system (61). The Jacobian matrix DF(0, 0)

of (61) is:

DF(0, 0) =


a11

1 + α I2

a12

(1 + α I2)
a21

(1 + α2 I2) (1 + α I2)

a22

(1 + α2 I2) (1 + α I2)

 . (B.16)

So system (61) can be rewritten as

dx

dt
=

a11x

1 + α I2
+

a12 y

1 + α I2
+ G1(x, y) (B.17)

dy

dt
=

a21x

(1 + α I2) (1 + α2 I2)
+

a22 y

(1 + α I2) (1 + α2 I2)
+ G2(x, y) (B.18)

where

G1 =
1

(1 + αy + α I2)(1 + α I2)
{[(1 + α I2)c1 − a11α]xy + [c2(1 + α I2) − αa12]y2

} (B.19)

G2 =
1

(1 + αy + α I2)(1 + α2 y + α2 I2)(1 + α I2)(1 + α2 I2)
{[c3(1 + α I2)(1 + α2 I2)

− a21(α2 + α + 2αα2 I2)]xy + [c4(1 + α I2)(1 + α2 I2) − a21αα2]xy2

+ [c5(1 + α I2)(1 + α2 I2) − a22(α2 + α + 2αα2 I1)]y2
+ [c6(1 + α I2)(1 + α2 I2) − a22αα2]y3

}. (B.20)

We need the normal form of the system (61). The eigenvalues of DF(0, 0) when s2 = 0 and (i), (ii) are satisfied
are:

Λi, −Λi.

With complex eigenvector

v =

 −1
−Λi(1 + α I2) + a11

a12

 , v̄ =

 −1
Λi(1 + α I2) + a11

a12

 .

Using the Jordan Canonical form of matrix DF(0, 0) and the procedure in [10, p. 107,108] we use the change of
variable u = x, v =

a11
Λ(1+α I2)

+
a12 y

Λ(1+α I2)
, to obtain the following equivalent system:

u
v


=


0 Λ

−Λ 0


u
v


+


H1(u, v)

H2(u, v)


(B.21)

where

H1(u, v) = −
((−a12c1 + a11c2) u + (−Λc2α I2 + Λa12α − Λc2) v) ((Λ + Λα I2) v − a11u)

a12


αΛ + Λα2 I2

v + a12 − αa11u + a12α I2

 (B.22)

H2(u, v) = −
1

h(u, v)


(Λ(1 + α I2)v − a11u)


A1v

2
+ A2uv + A3v + A4u2

+ A5u


. (B.23)

And:

A1 = Λ2 (1 + α I2)
2
[−a12c6α2 I2

2α − a11c2α1 I2
2α2

2
− a11c2α I2α2

− a12c6α I2 + a11a12αα2
2 I2 + a11a12αα2 + a12a22αα2
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− a11c2α2
2 I2 − a12c6α2 I2 − a11c2α2 − a12c6]

A2 = −Λ (1 + α I2) [a11a12c1α2
2α I2

2
+ a12

2c4α2 I2
2α − 2 a12a11c6α2 I2

2α

− 2 c2α I2
2α2

2a11
2
+ a12αα2

2a11
2 I2 − 2 a12a11c6α I2 − 2 c2α I2α2a11

2

+ a12
2c4α I2 + a11a12c1α2α I2 + a11a12c1α2

2 I2 + a12
2c4α2 I2 − 2 a12a11c6α2 I2

− 2 a11
2c2α2

2 I2 + a12
2c4 − 2 a11

2c2α2 − 2 a12a11c6 + a11a12c1α2 + a12αα2a11
2

− a12
2αa21α2 + 2 a12a11a22αα2]

A3 = Λ (1 + α I2) a12[−a12c5α I2
2α2 + a12a11α1α2

2 I2
2
+ 2 a12a22αα2 I2

+ 2 a12a11αα2 I2 − a12c5α I2 + a12a22α + a11a12α − a12c5α2 I2 + a12a22α2

− 2 a11c2α I2
2α2 − a11c2α I2 − a11c2 − a11c2α2

2 I2
2
− 2 a11c2α2 I2]

A4 = −a11[−a12
2c4α2 I2 − a11a12c1α2α I2 + c2α I2α2a11

2
− a12

2c4α2 I2
2α

− a12
2c4α I2 − a12

2c4 + a12
2αa21α2 − a12a11a22αα2 − a11a12c1α2

2α I2
2

+ a12a11c6 + a11
2c2α2

2 I2 + a12a11c6α2 I2
2α + a11

2c2α2 − a11a12c1α2

+ a12a11c6α2 I2 + a12a11c6α I2 + c2α I2
2α2

2a11
2
− a11a12c1α2

2 I2]

A5 = a12[2 a11
2c2α2 I2 + a11

2c2α I2 + a12
2αa21 + a11

2c2α2
2 I2

2
− a12a11a22α2

− a12a11a22α − a12
2c3α2 I2 − a12

2c3α I2 + a11a12c5 + a12
2α2a21 − a12a11c1

+ 2 a12
2αa21α2 I2 − a12a11c1α2

2 I2
2
− a12a11c1α I2 − 2 a12a11c1α2 I2

+ a11a12c5α2 I2 + a11a12c5α I2 − a12
2c3α I2

2α2 − a12
2c3 + a11a12c5α I2

2α2

− 2 a12a11a22αα2 I2 − 2 a12a11c1α I2
2 alpha2 − a12a11c1α I2

3α2
2
+ 2 a11

2c2α I2
2α2

+ a11
2c2α I2

3α2
2
+ a11

2c2]

h(u, v) = Λ (1 + α I2)
2 a12[


αΛ + Λα2 I2


v + a12 − αa11u + a12α I2]

× [(α2Λ + α2Λα I2) v + a12 − α2a11u + α2 I2a12] (1 + α2 I2) .

Let

ā2 =
1
16

[(H1)uuu + (H1)uvv + (H2)uuv + (H2)vvv] +
1

16(−Λ)
[(H1)uv((H1)uu + (H1)vv)

− (H2)uv((H2)uu + (H2)vv) − (H1)uu(H2)uu + (H1)vv(H2)vv]. (B.24)

Then

ā2 =
3


−c1Λ vα2 I2 + Λ va11α
2
− a12c1α I2 + a11c2α I2 − c1Λ vα − a12c1 + a11c2


a12a11

2α


8 (a12 + αΛ v)4 (1 + α1 I2)
3

−
(−3 a11c2 − 3 a11c2α I2 + 2 a12a11α + a12c1 + a12c1α1 I2) αΛ2

8 (1 + α I2) a12
3

−
1

8Λ (1 + α I2)
4 a12

4 (1 + α2 I2)
3 [2 a11 A5αΛ + 6 a11 A5αΛα2 I2 + 2 a11 A5α

2Λ I2

+ 4 a11 A5α
2Λ I2

2α2 + 2 a11 A5α2Λ − a11
2 A3α − 2 a11

2 A3αα2 I2 − a11
2 A3α2 − a11 A2a12

− a11 A2a12α2 I2 − a11 A2a12α I2 − a11 A2a12α I2
2α2 + A4Λ a12 + A4Λ a12α2 I2

+ 2 A4Λ a12α I2 + 2 A4Λ a12α I2
2α2 + A4Λ a12α

2 I2
2
+ A4Λ a12α

2 I2
3α2]
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+
3
8

(−A1a12 − A1a12α2 I2 + A3αΛ + 2 A3αΛα2 I2 + A3α2Λ)

(1 + α I2)
2 a12

4 (1 + α2 I2)
3

−
1

16Λ


−2

Λ (−2 a11c2 − 2 a11c2α I2 + a12a11α + a12c1 + a12c1α I2)

a12
4 (1 + α I2)

2

− 2
(A5Λ + A5Λα I2 − a11 A3) (−a11 A5 + A3Λ + A3Λα I2)

Λ2 (1 + α I2)
6 a12

6 (1 + α2 I2)
4

− 4
(−a12c1 + a11c2) a11

2 A5

a12
5 (1 + α I2)

4 Λ (1 + α2 I2)
2 4

(−c2α I2 + a12α − c2)Λ2 A3

a12
5 (1 + α I2)

2 (1 + α2 I2)
2


. (B.25)
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