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1. Introduction

The study of epidemic and viral dynamics via mathe-
matical modelling has been an interesting topic to investi-
gate in the last decades. Researchers have constructed
mathematical models which could play a significant role
in better understanding diseases and drug therapy strate-
gies to fight against them.

During the process of viral infection, as soon a virus
invades host cells, Cytotoxic T Lymphocytes (CTL's) play
an important role in responding to the aggression.
Lymphocytes are programmed to kill the infected cells
through the lysine of the infected ones.

To model the immune response during a viral infection,
taking into account the CTL response, researchers consider
the following set of differential equations

X =5—dx— Bxy,
V= pxy —ay — pyz,
sz(yvz)_bz>
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where variable x, y and z represent the populations of unin-
fected cells, infected cells, and number of CTL’s by ml of
peripheral blood, respectively. The parameter s represents
a constant source of susceptible cells, g is the infection rate
constant, we assume that a susceptible cell become
infected at rate proportional to the number of infected
cells. Constants d and a represents the death rates of sus-
ceptible and infected respectively. Infected cells are killed
at a rate p by the CTL immune response. The function
f(y,z) describes the rate of immune response due to virus
activation. In this paper we consider f(y,z) = cy — myz,
the term myz represents an immune impairment according
to [1], the CTL cells proliferate at a rate ¢ and decay at rate
m. Linear and bilinear immune response have been consid-
ered in [2-5].

In [4,6,7] time delays have been incorporated for
immune response, since antigenic stimulation generating
CTLs may need a period of time, that is, the activation rate
of CTL response at time t may depend on the population of
antigen at a previous time. On the other hand, it has been
realised recently [8,9,13] that there are also delays in the
process of cell infection and virus production, and thus,
delays should be incorporated into the infection equation
and/or the virus production equation of a model. In this
paper, we consider the following model,


http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2014.08.009&domain=pdf
http://dx.doi.org/10.1016/j.chaos.2014.08.009
mailto:avila@uady.mx
mailto:noe.chan@uady.mx
mailto:galmeida@uady.mx
http://dx.doi.org/10.1016/j.chaos.2014.08.009
http://www.sciencedirect.com/science/journal/09600779
http://www.elsevier.com/locate/chaos

2 E. Avila-Vales et al./Chaos, Solitons & Fractals 69 (2014) 1-9

x=s—dx—F(x,y),
y=Fx(t—1),y(t-1)) —ay —pyz, (M
zZ=cy—bz—-myz

We assume that the force of infection at any time t is
given by the general function F(x, y) [14], this general func-
tion includes the cases: bilinear incidence rate gxy, where 8
is the average number of contacts per infective; standard
incidence rate Bxy/(x +y); the Holling type incidence rate
of the form pxy/(1 + o1x) where o is a positive constant;
the saturated incidence rate of the form pgxy/(1 + ony),
where o, is a positive constant; the saturated incidence
of the form Bxy/(1+oux+ ony), where «; and o, are
constants.

In our work we present global stability results for
system (1), several authors have studied the dynamics of
systems with nonlinear incidence rate. Huang et. al. [10]
studied a model with general incidence rate
F(s(t))G(i(t — 7)) which did not consider some of our func-
tions, for instance 2% Mf’x‘{w. Korobeinikov [11] and
Enatsu et al. [12] considered epidemic SIR, SEIR models,
and used Volterra-type Lyapunov functions to prove the
global stability of the endemic equilibrium state. In our
work we consider a Susceptible-Infected-Virus dynamics,
we use a combination of quadratic and Volterra-type func-
tionals to prove global stability, we also take into account
immune response due to virus activation. This consider-
ation renders a modification of Lyapunov functions used
in previous works, in order to prove global stability of
the infected equilibrium. In a related work, Muroya et. al.
[13] used combinations of common quadratic and
Volterra-type functionals to prove global stability for this
immune response, their results are only for a bilinear inci-
dence rate and delay on the rate of virus production and
delay in the production of virus. They can prove the global
stability for a model without delay and for the delayed
model a Hopf bifurcation occurs. We proposed a general
interaction F(x,y) and a delay in the process of cell
infection and virus production.

The paper is organised as follows in Section 2 we prove
the existence of the positive equilibrium. In Section 3 we
prove that solutions of (1) with positive initial conditions
will remain positive for all time and their boundedness.
The global stability analysis of infected-free and infected
equilibria is analysed in Section 4. We perform a local sen-
sitivity analysis in Section 5 and in Section 6 we present
simulations to illustrate our findings. Finally we draw our
conclusions in Section 7.

2. Existence of equilibria

To find the equilibria of system (1) we need to solve

0=s-dx—-F(xy), (2)
0=F(xy)—ay—pyz, 3)
0=cy—bz—myz. (4)

With this end we propose the following conditions for
F(x,y)

1. F(x,y) is continuously differentiable in [0, co) x [0, 00).
(H1) F(x,y) >0, £(x,y) >0, £(x,y) >0, for x>0 and

’ X sy
y>0.
(H2) F(x,0)=F(0,y) =0, %(x,0)=0, $(x,00>0 for
x>0andy>0.

When x =4, y =0 and z = 0 the Egs. (2)-(4) are satisfied,
therefore Eq(5,0,0) is a steady state called the infection-
free equilibrium.

To find a positive equilibrium we proceed as follows.
From Eq. (4) we have

_ o
Zﬁb+my' )
From Egs. (2) and (3) we have
s—dx:ay+pyz:>x:5—%y—%yz, substituting (5)
_s_4a, pc_y
TX=ad T dbrmy (6)

Substituting (5) and (6) in (3) we have the following
function H(y)

_p(S_e, P VN e Y
H(y)_F<d @’ db+my’y> vy pcb+my'

Let xo = 3, note that H(0) = 0, because F(xo,0) = 0. We can
compute that there exists a positive root y, such that
s=ay+ pc%_ hence

H(yo) = F(0.3o) — s = —s < 0.

And when y > 0, since H(y) is continuously differentiable,
we have

a oF OF OF

faa(xo,0)+@(xo,0)fa=@

:a<@—l>.

Let Ry = %9 Thus, Ry > 1 ensures that H'(0) > 0. And
H(y) is continuous in [0,y,], then there exist some

y* €1[0,y,], such that H(y*) =0. Since ay + pc X is

b+my

H(0) = (%0,0) —a

. . *\2 2
increasing, we have ay* + pcg%r- < ay, + pcbf—,gyo. There-

*\2 *
fore x* =5 -9y — & 20> 0, also z' = ;% >0 and we
have proved the existence of the endemic equilibrium
E*(x*,y*,z*) for system (1) under the condition Ry > 1.

Hence we have proved the following theorem:

Theorem 1. Assume that F(x,y) satisfies (H1) and (H2), if
Ro > 1 then system (1) has a positive equilibrium state
E'(x",y*,2").

3. Positivity and boundedness of solutions

We denote by C = C([-7,0],R®) the Banach space of
continuous functions ¢ : [-7,0] — R* with norm

¢l = jgl)lzo{l%(())\, 92(0)], 1¢3(0)[},

where ¢ = (¢, $,, ¢3). The nonnegative cone of C is
defined by ¢, = C([-7,0], R?).
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The initial condition for system (1) is given as

X(0) = ¢1(0) = 0, y(0) = $2(0) > 0,
z(0) = ¢5(0) =0, —-T<0<0, ¢(0)>0. (7)

The followmg result establishes the positivity and
boundedness of solution for system (1) with initial condi-
tion (7).

Theorem 2. Under the initial condition (7), then x(t),y(t)
and z(t) are positive and bounded for all t > 0 at which the
solution exists.

Proof. To see that x;(t) is positive, we proceed by contra-
diction. Let t, the first value of time such that x;(t) = 0, so
x(t) > O for all t < to. By the first equation of (1) we see that
x(t1) =s > 0 and x(t;) = 0, therefore there exist € > 0 such
that x(t) < 0 fort € (to — €, to), this leads to a contradiction.
It follows that x(t) is always positive. With a similar argu-
ment we see that y(t) and z(t) are positive for t > 0.

To prove the ultimate boundedness, we note that
x(t) < s —dx(t) implies that limsup, . x(t) < 3.

Consider N(t) = x(t — T) + y(t),y(t) and z(t) are positive
then we obtain,

N(t) = (t = 7) + y(t) = s — dx(t — 7) — ay(t) — py(£)z(t)
<s—dx(t—1)—ay(t) <s—qN(t),

where g = min{a,d}, therefore N <?+¢€ for €>0 and ¢

large enough which implies that there exists M > 0 such

that y(t) < M.

Now consider the third equation of system (1), y(t) < M
and z(t) is positive, then we have z(x) < cM — bz which
implies that limsup,_z(t) < 4.

Therefore there exists K > 0 such that x(t) < K,y(t) < K
and z(t) < K. O

4. Stability analysis

In this section, we give conditions for the global stabil-
ity of the infection-free steady state and the infected
steady state of system (1). The technique of proofs is the
second Lyapunov method.

For simplicity, we will use the following notation in the
proof. x=x(t), y = y(t), z=2(t), x. =x(t — 1), y, =y(t - 1),
the following result establishes the global stability for the
uninfected equilibrium Eq(s/d,0,0) if Ry < 1

For the global stability of the infection-free equilibrium
Eo(x0,0,0) of system (1). We propose the following
conditions:

(H3) & v (x,0) is increasing with respect to x > 0.

(H4) F(x,y) <yZ (x 0) with respect y > 0.

By (H3), the following inequalities hold true:

Fy(%0,0)
Fy(x,0)

8
Fy(XO’0)<] for x > xo ®
Fy(x,0) ’

>1 forxe(0,xp),

Under these conditions we have the following theorem
Theorem 3. Suppose that conditions (H1)-(H4) are satisfied.
Then the disease-free equilibrium Ey(Xg, 0,0) of system (1) is
globally asymptotically stable for any T > 0 if Ry < 1

Proof. We define the Lyapunov functional

i F(Xo,9) /"
L=x—x0— lim dn+y+ [ Fx(t+0),y(t+0))do.
o [ Jim gy [ R0y 0)
By (H1)-(H4), L is defined and continuously differentiable
for all x(t), y(t) > 0, z(t) > 0, and L = 0 at Ey(xo,0,0). The
system (1) at Eo(xo,0,0) has s = dxo. The time derivative
of L along the solutions of system is given by

F(Xo,Y)

L= x—ylim F(x.y) X+Y+FXy)—F(xe.y:)

_ (1 7}L%1FF((X>?;))> (s — dx — F(x.y)) + F(xz,y,) — ay
-pyz+Fxy) - F(x:,y2)

. (1 - lim FF(("; yy))> (dxo — dx)
- <1 - lim F((’; ;;) (x.y) - ay - pyz + F(x.y)

_ dx(] 731%1”("0’5’))) (—f 1) = F(x.y)
+F(x.,y)lm1 F(( y))fayfpyZJrF(XyJ/)

(1~ fim ) G- 1) + Felim
—ay-pyz.

For the first term, of the above expression, we have by (8)

(- ey G- 1) = (- G )

<0

For the second and third term we have, using (H4),

F(xo,y) Fy(%0,0)
Fxylim oy W =FxNE ooy — @
<YF,(x,0) l;yy((x)f’ ’g)) —ay
:y(F}’(X070) - a) = ay(RO - 1)~

therefore if Ry < 1

L<( FyXoJ/)if] —ay(1 —Ro) —pyz<0

for all x(t) = 0, y(t) > 0, z(t) > 0. It is easy to verify that
the infection-free equilibrium Ey(xo,0,0) is the only fixed
point of the system on the plane x = x, and hence it is easy
to show that the largest invariant set in {(x,y,z)|L = 0} is
the set E = {(x0,0,2)|0 < z < M}, where M is given in the
proof of Theorem 2. Given that in this set the system is
reduced to z' = —bz, any point in this set evolves towards
Eo. By the Lyapunov-LaSalle theorem [15], E, is globally
asymptotically stable for any 7 > 0. O
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In the following, we consider the global asymptotic sta-
bility of a unique infected steady state E*. Motivated by the
works and ideas of [4,9,14], in this work, we construct a
Lyapunov functional for infected steady state, using suit-
able combinations of quadratic, Volterra-type functions
and the Volterra-type functionals.

For this section we propose the following hypotheses

y_Fxy) F(xy)
H3) 5 <Fixy) ey

We have the following theorem.

for ye(0,y*) y for y > y*.

Theorem 4. Suppose that conditions (H1)-(H2) and (H5) are
satisfied. If Ry > 1 then the unique endemic equilibrium
E*(x*,y*,z*) of system (1) is globally asymptotically stable
forany t > 0.

Proof. We consider the following Lyapunov functional

e Lperlog)

L is defined and continuously differentiable for all
x(t) >0, y(t) >0, z(t) > 0. And L(0) =0 at E"(x*, y*, z°).
At E'(x*, y*, z*), system (1) has

s=dx’ +F(x"y"), 9)
Fx.y") =ay" +py'z, (10)
O0=cy —bz —myz. (11)

The time derivative of L along the solutions of (1) is
given by

dL_ . Fxty"). V. p N
it F(x.y*) ' ( 7;>y+cfmz* (2-2)z
+Fx,y) = F(x0,y.) + F(x",y") In (FIE‘)((;S))
_ Fx* ¥y )N\ o LY
= (1 Fixy )>(s dx —F(x,y)) + < y)(F(xﬁyf)
— @ - py2) o _pmz* (z—2')(cy — bz — myz) + F(x,y)

- Fixey) + Pl ) n (b

Recall x; =x(t—1),y, =y(t— 7). Using (9) the first
term can be written as

FX Y)Y -
(1 - F(x,y*)>(dx +F(x*,y") —dx — F(x,y))

-1 ”é"‘yy?)<l—%>
< y) F(x.y))

:dx*(l F(( ))(f—) FX'.y") - F(x.y))

[Foe,y )P Fixy)
Fixy) — Fxy)

F(x,y). (12)

The second term can be written as
F(Xz,y:) fayfpyzfy;F(xmyf)+ay*+py*2~ (13)

Using Eq. (11) and myz* — myz* = 0 the third term can
be expressed as

p Ny by __ b
Cimz*(z—z)(cy bz myz)_—cimz*

x (¢y —bz—myz—cy* +bz" + my*z* + myz- —myz")

(z-7)

=P )y -y ble—2) - my-2) ~mz (y-y)
= -2y )e-mz) - (z-2)(b+ my)
=L brmyz-2)+pe-2)0-y). (14)

Therefore substituting (12)-(14) the derivative of L can be
written as

o FxLy) x . [Foe,y)l
i=dx (1 - F(x,y‘))(l —)?) +FY) = Fooy) = Sats

Fx',y")
F(x,y*)

+py

F(x,y) + F(%:,y;) —ay — pyz —};—F<xf.yf) +ay”

S (b+my)(z-2) +p@z-2)y-y) +F(xy)

F(XI:.Vr))
Fix,y)

. F(x*,y* o [Fxe Y
= (“F(&%))(l’%)”(" S
y

Y b oy

Fixy) [0V~ @ —pyz =" o F (X ye) + @y +py'z

L bemy)z-2) +pz-2)y-y) +Fxy)
Fixy') F<x‘y)>

(i)
) ) TF ”(1 Fiy) | Fxy)
X
2y

—F(e.32) +F<x*,y*)ln(

- ( ( )
y F Ivyr (Xf7y‘c) p
( y F(x (F(x,y)))fc—mz*
x (b+my)(z - —a(y ) —pz(y -y ) +pz-2)y-Yy).
Using (10) we can rewrite —a(y —y*)—pz(y —y*)

+p(z-2')(y-y’) as

- <%fp2*> y-y)-pz(y-y")+p@z-2)y-y’)

=- (y’“(y y)+pzZ(y-y)-pz(y—-y)+pz-2)y-Yy")
:F<x*,y*)( ,yx) -2y -y) Pz )y -Y)

(i)
Therefore L can be rewritten as
L= d"( ey ) (%)
)1 -Fy *Fier)
<1

Fx,y7)
SRt )
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p
c—mz

=& < FF((X*’y))>< _x£> |

Bk o (50)
(1 v Fxr,yf)Hn J;_F(xfyyf)»
e

(b+my)(z —z')?

y Flx,y7)
1Y Exy) lﬂw*)))

¥ Fxy) +In

(
(- 1E) (5

(b+my)(z—z')%

mz*

The function F(x,y) is monotonically increasing for any
x > 0, hence the following inequality holds,

FY)\ (1 X
- -—)<o.
R
And by the properties of the function
g(x) =1—-x+Inx, (x > 0), we note that g(x) has its global

maximum g(1) = 0. Hence g(x) < 0 when x > 0 and the fol-

lowing inequalities hold

Ty ") < 6
-yi ?Eiiiiiii o (T Re5) <0 "

And by (H5) and the fact that F(x,y) is monotonically
increasing for any y > 0, we have the following inequality

y F(x,y)> (F(&y*) 3 )
5 roas) (R 1) <@ (19)
y (15)-(19), we have dL/dt < 0. It follows from the
classical Lyapunov-LaSalle invariance principle [15] that
solutions converge to the largest invariant set
{dL/dt = 0}. We note that dL/dt = 0 holds if and only if
x(t) =x* and y(t) = y* and z(t) = z* for all t, and so the larg-
est invariant set consists of the single point (x*,y*,z*). Thus
(x*,y*,z") is globally asymptotically stable.

The uniqueness of the infected equilibrium state
(x*,y*,z") follows from the fact that the equality
‘é%(x ¥,z) =0 holds only when x=x* and the point
(x*,y*,z*) is the only equilibrium state of the system,
when x =x* O

5. Sensitivity analysis

For the local sensitivity analysis we calculate the sensi-
tivity indices of the basic reproduction number, in order to
assess which parameter has the greatest influence on
changes of Ry (see [16]).

To this aim, denote by v the generic parameter of model
(1). We calculate the normalised sensitivity index, defined
as the ratio of the relative change in Ry to the relative
change in the parameter

¥ ORo

Sy = Ro oy

This index indicates how sensitive Ry is to a change of
parameter . A positive (respective negative) index indi-
cates that an increase in the parameter value results in
an increase (respectively decrease) in the Ry value.

In Table 1 we list the different expressions of
Ro,Ro = Fy("" , depending on the incidence rate F(x,y). Note
that the value of Ry = £ when we consider the incidence
rates as fixy or 2% also when we consider the incidence

T+opy’
rates - or — & On the other

T+oqx T+oq x+ony

the value of Ry =

d+oc s)"
hand, when F(x,y) = ff; the basic reproductive number is
Ro =L

In the case of F(x,y)= pxy the basic reproductive

Ro =, as we see in Table 1, note that:

s ORy sadﬁ_
*"Ro 0s spad

which means that S, the index of Ry respect the parameter
s, does not depend on any parameter values in Fig. 1 we
show the values of S;=1,5,=-1 and S; = —1. Also in
Fig. 1 we show the sensitivity index for the cases when

_B Bs
Ry = a and a(d+oys)

In Fig. 2, we present our calculations for the sensitivity
of Ry with respect to its parameters. In Fig. 1(a), we present
the sensitivity for Ry = £ obtained in the cases when F(x, y)

is fxy or ; f’;yz 5 In these cases we can appreciate that an

increase in parameters g or s will increase, in the same per-
centage, the actual value for R,. In the other hand an
increase in the parameter a or d will cause a decrease in
the same percentage, over the value of Ry. Similar conclu-
sions can be obtained from Fig. 1(b) for the case when

F(x,y) = £%. For example to decrease the value of Ry, say

by 10%, we need to increase the value of a by 10%, while
Ro will increase, say by 10% if g increases by 10%. In the

case of Ry = d’g( 5 Obtained in the cases when F(x, y) is
Bxy Bxy .
Tray OF Ty We can conclude from our calculations that

the impact over R, of g or a is the same as in the previous
cases, and the parameters s and d have minimal effect on
the value of Ry. For example an increment of 50% on the
value of s only increase the value of Ry by 0.01%, a similar
effect is observed for d, in the other hand by increasing o
by 10% will decrease R, by almost 10%.

We conclude this section by providing the sensitivity
indices for the endemic equilibrium considering
F(x,y) = pxy. Based on data parameter of [4], we consider
the parameters values of case 1 in Table 3. The results
are showed in Fig. 2.

The positive number in the bar indicates an increase in
the coordinate when the parameter increases and a nega-
tive indicates a decrease in the value when the parameter
increases. From Fig. 2 we can observe the following facts:
for the value of x*, showed in (a), the parameter with more
influence is the contact rate, 8, which means that the num-
ber of susceptible cells will decrease when the contact rate
with the infected cells increases. By increasing this param-
eter 10% the amount of susceptible cells will decrease
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Table 1
Values for Ry depending of the incidence rate.
F(x.y) Ro
ps
Bxy ﬁ
Ly b
Xty a
pxy ps
THoqx a(d+os)
Bxy Bs
T+ony ad
BXy Bs
THoux-+ony a(d+ays)

9.8%, note that increasing the death rate of infected cells, g,
the number of susceptible cells also increases. From panel
(b) we can note that the parameter with more influence is
the source of susceptible cells and the number of infected
cells will decrease if their death rate increases. A similar
analysis can be made from panel (c). In Table 2 we compare
the change on the number of cells when we increase or
decrease the value of Ry. The way to read Table 2 is as fol-
lows, for example when we increase j the basic reproduc-
tive number will increase, the number of susceptible cells
decrease and the other populations form system will
increase.

6. Numerical simulations

In the numerical simulations we illustrate the result
obtained in Theorem 4 using the routine of MATLAB
dde23 [17] and the values indicated in Table 3. We take
the values as in [4,18].

In Fig. 3 we illustrate the dynamics of system (1) con-
sidering F(x,y) = Bxy, this force of infection satisfies
(H1)-(H5) in particular (H4) and (H5) satisfy the equality,
we can appreciate that for a higher delay the stabilization
take more time. In Fig. 4 we consider F(x, y) = f%, in this
case there are no significant variation on dynamics of sys-
tem (1), this force of infection also satisfies (H1)-(H5) with
strict inequality. In Figs. 5 and 6 we consider the force of

infection {2~ and {2 respectively. Note that this func-

tion also satisfies our hypothesis (H1)-(H5) with strict
inequality, again we can appreciate the global stability
for this simulations, but the dynamics is a different in
these cases. The Fig. 7 presents the case when
F(x,y) = % the variation on dynamics is minimal in
this scenario, also this force of infection satisfies our
hypothesis (H1)-(H5).

Table 2

Relation between the parameters involving R, and their effect on the
number of susceptible, infected cells and number of CTL'’s, considering the
incidence rate F(x,y) = fxy.

Parameter to Ro X* y* z*
increase

s Increase  Increase Increase Increase
B Increase  Decrease Increase Increase
a Decrease Increase Decrease Decrease
d Decrease Decrease Decrease Decrease

-1

B s a d B

(a) Sensitivity index of Ry

when F(x,y) = pxy and  when F(x,y) =
F(xy) = 1
XY 1+agy

(b) Sensitivity index of Ry

a 0 s a a @

(c) Sensitivity index of Ry

Bxy _ Bxy
o when F(x,y) = Trarx and
- Bxy
F(x’ y) ~ l+apxtagy

Fig. 1. Sensitivity Index of basic reproduction number with respect to parameters of Table 3.

0.0867

~0.3443 03443

(a) Indices for x*

(b) Indices for y*
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Fig. 2. Sensitivity Index of equilibria with respect to some chosen parameters and the incidence rate F(x,y) = fixy.



E. Avila-Vales et al./Chaos, Solitons & Fractals 69 (2014) 1-9 7
Table 3
Values for parameters in simulations.
Parameter Description Case 1 Case 2 Case 3 Case 4 Case 5
s Proliferation rate of CD4" T cells (cells day~' by ml™" of peripheral blood) 270 270 270 270 270
d Decay rate of CD4" T cells (day™!) 0.02 0.02 0.02 0.02 0.02
a Decay rate of infected CD4" cells (day ') 0.8 0.1 0.1 0.8 0.1
b Decay rate of CTLs (day ') 0.2 0.2 0.2 0.2 0.2
c Proliferation rate of CTLs (cell 2 day ') 0.025 0.025 0.025 0.25 0.025
p Killing rate of infected CD4™ cells (cells™' day™") 0.04 0.04 0.04 0.04 0.04
B Infection rate of CD4" T cells (cells™' day™") 0.001 0.15 0.05 0.001 0.05
m Immune impairment rate of viral 0.01 0.01 0.01 0.01 0.01
o Holling Il parameter - - 0.3 - 0.3
oy Holling Il parameter - - - 0.3 0.3
Ro Basic Reproductive number 16.88 1.5 1.6 16.88 1.6
2500 600 5
i —1=1 —1=1 —1=1
v T=] 500 =2 =
q - --1=3 4 --1=3
400
2300 %3
200
2
100
% 100 200 300 400 500 %100 200 300 400 500 o100 200 300 400 500
(a) Susceptible Cells (b) Infected Cells (c) CTL’s

Fig. 3. Simulations with incidence rate F(x,y) = pxy, the value of parameters indicated in case 1, the infected equilibrium is (893.4,282.2,2.33) and the

values for the delay are 1 =1,7 =2 and 7 =3.
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Fig. 4. Simulations with incidence rate F(x,y) = /7%,

oft=1,7=2and 7= 3.
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Fig. 5. Simulation with incidence rate F(x,y) = {3,

values for the delayas t=1,7=2and 7 =3.
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the value of parameters indicated in case 2, the infected equilibrium is (13351.6,19.8,1.2) and the cases

5
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2 e
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.
(c) CTL’s

the value of parameters indicated in case 3, the infected equilibrium is (13167.4,39.9,1.7) and the
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Fig. 6. Simulation with incidence rate F(x,y)
taket=1,7=2and t=3.
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value for the parameters indicated in case 4, the infected equilibrium is (11695.4,41.6,1.68) and we

15000, 200
. 150
10000,
--1=3
g 2100
5000
50
0 0
0 100 200 300 400 500 0 100
(a) Susceptible Cells
. . ) e p
Fig. 7. Simulations with incidence rate F(x,y) = 1552 —

the cases of t=1,7=2and 7 = 3.

7. Conclusions

In this work, we give a viral infection model with intra-
cellular delay, immune impairment and a general non-lin-
ear incidence rate, global stability of the infection-free
equilibrium and infected equilibrium have been given by
the Lyapunov-LaSalle type theorem. We have built the
Lyapunov function by combining linear, quadratic and Vol-
terra-type functions, while the terms to construct the func-
tional are similar to those presented by [10-12], we have
considered within the dynamics, aside of susceptible and
infected cells, the addition of population of CTL’s, which
requires the modification of functionals used in previous
works. Therefore it is needed to consider a quadratic
expression for the construction of functional to conclude
satisfactorily the global stability. We have obtained suffi-
cient conditions, which are entirely written in terms of
the parameters of system, for the global asymptotic stabil-
ity of both the virus-free (Ry < 1) and the infected equilib-
rium (R > 1). Such aspect is worth to be -carefully
investigated because it is biologically relevant. For exam-
ple, the global stability of the infected equilibrium gives
the conditions, written in terms of the parameters of the
system, under which the virus cannot be eliminated.

The local sensitivity analysis shows that the basic
reproductive number increases proportionally to parame-
ters s and B and decreases proportionally to parameters a
and d, which means that in order to eliminate the infection
we must try to increase the value of a or d. From Table 2 a
positive increment on the parameter a, will decrease the

200

t

(b) Infected Cells

300 400 500 0 100 200 300 400 500

(c) CTL’s

the value of parameters indicated in case 5, the infected equilibrium is (13175.6,39.05,1.7) and

number of infected cells and CTL’s and will increase the
number of susceptible cells.

Our result establishes that no sustained oscillation
regime exists which is similar to the conclusion of paper
[9] but quite different from the conclusion of paper [4],
where there are sustained oscillations. We think that if we
introduce in model (1) a logistic proliferation term for the
uninfected cells we could get sustained oscillations as in [7].
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