
A multi-inverse approach for a holistic understanding of applied
animal science systems

L. M. Vargas-Villamil1†a , L. O. Tedeschi1, S. Medina-Peralta2, F. Izquierdo-Reyes3,
J. Navarro-Alberto4 and R. González-Garduño5

1Department of Animal Science, Kleberg, Texas A&M University, College Station, TX 7743-2471, USA; 2Facultad de Matemáticas, Universidad Autónoma de Yucatán, Anillo
Periférico Norte, Tablaje Cat. 13615, Col. Chuburná Hidalgo Inn, Mérida, Yucatán 97203, México; 3Campus Tabasco, Colegio de Postgraduados, Apartado postal 24,
Cárdenas, Tabasco 86500,México; 4Facultad deMedicina Veterinaria y Zootecnia, Universidad Autónoma de Yucatán, km 15.5 CarreteraMérida-Xmatkuil, Mérida, Yucatán,
97100, México; 5Unidad Regional Universitaria Sursureste, Universidad Autónoma Chapingo, Km. 7, Carretera Teapa-Vicente Guerrero, Teapa, Tabasco 86800, México

(Received 20 August 2019; Accepted 30 March 2020; First published online 30 April 2020)

Technological and mathematical advances have provided opportunities to investigate new approaches for the holistic quantification
of complex biological systems. One objective of these approaches, including the multi-inverse deterministic approach proposed in
this paper, is to deepen the understanding of biological systems through the structural development of a useful, best-fitted inverse
mechanistic model. The objective of the present work was to evaluate the capacity of a deterministic approach, that is, the
multi-inverse approach (MIA), to yield meaningful quantitative nutritional information. To this end, a case study addressing the
effect of diet composition on sheep weight was performed using data from a previous experiment on saccharina (a sugarcane
byproduct), and an inverse deterministic model (named Paracoa) was developed. The MIA successfully revealed an increase in the
final weight of sheep with an increase in the percentage of corn in the diet. Although the soluble fraction also increased with
increasing corn percentage, the effective nonsoluble degradation increased fourfold, indicating that the increased weight gain
resulted from the nonsoluble substrate. A profile likelihood analysis showed that the potential best-fitted model had identifiable
parameters, and that the parameter relationships were affected by the type of data, number of parameters and model structure.
It is necessary to apply the MIA to larger and/or more complex datasets to obtain a clearer understanding of its potential.
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Implications

In applied animal science, a useful model is a tool that
expands the understanding of a biological system. How
can researchers construct useful models that benefit from
new scientific developments? The deterministic multi-inverse
approach is an alternative approach to traditional model
development that provides new possibilities for the construc-
tion of useful models and offers valuable insight into under-
standing the research process. This technologically advanced
approach can reduce the amount of time and human resour-
ces needed to optimize complex biological systems.

Introduction

Advances in technology and mathematical methods have
provided new opportunities to study the holistic quantitative

aspects of complex biological systems in different fields,
including animal science (Reed et al., 2016), pharmacoki-
netics (Gelman et al., 1996), forecasting and environmental
science (Young, 2006). The deterministic inverse problem
approach (DIPA), defined as deterministic inference based
on procedures, methods and techniques that allow the best
structural description of a system and the true unknown val-
ues of its parameters to be driven by or inferred from data
(Young, 2002), has become increasingly relevant for these
new approaches. In animal science, the dominant methodology
has been to use a deductive (top-down) approach to develop
direct mechanistic models (Tedeschi and Fox, 2018). However,
the DIPA is an inductive approach (bottom-up) approach that
focuses on minimizing an objective function that describes
the distance between an inverse model and the data and is
limited by the behavior of the system.

In this work, a discussion of the inductive and deductive
concepts is presented based on general definitions of scien-
tific inference (Young, 2002) and addresses two research
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cycles as it is described in Figure 1. In the first cycle, a pre-
dictive hypothesis deduced from a theory is tested in the real
world and falsified or supported (deductive approach).
In the second, observations (data) are used to find patterns
(a model or a theory) that are then tested in the real world
(Overmar et al., 2007) (inductive approach); in this context,
the data drive the process. Frequently, these cycles are con-
sidered different processes and consequently involve differ-
ent approaches. However, we can consider them as two
parts of a single research reasoning or process with two dif-
ferent research perspectives depending what is considered as
driving the process, as shown in Figure 1: the hypothesis
(deductive approach) or the data (inductive approach). In
some cases, the researcher does not fully pass through both
cycles (shortcut in Figure 1); regardless, the aim is to generate
a theory and test it in the real world (Overmar et al., 2007). D)
Some authors divide the inverse inference (as opposed to
forward inference) into inductive and abductive inference,
which are both driven by the data; abductive inference is
the process of forming an explanatory hypothesis (Fischer,
2001). In multi-inverse approach (MIA) process, the focus
is on answering a biological question without restricting
the approach to specific logical forms throughout every step
of the research process. In the research process, the cycle is
repeated indefinitely, never finishes, and the researcher
increasingly approaches the data or theory, depending on
whether the approach is deductive or inductive approach
(Figure 1). In both approaches, the researcher views the over-
all process. DIPA is an inverse approach because the theory
(model) is inferred from the data; however, depending how
the observations (data) are used to find patterns (a model, a
theory) (Overmar et al., 2007), it can be very similar to a
deductive approach.

The principal concern in modeling biological systems has
been the estimation of the true values of unknown parame-
ters because they are considered essential for constraining
model predictions, where the true value is the value obtained
with perfect measuring instruments without committing any
error of any type and ideal conditions of high-frequency data.
The value of a parameter is frequently obtained through
independent measurement; however, if the measurements
are imprecise or incomplete (Gutenkunst et al., 2007b) or
the measurement conditions vary (Guanawardena, 2010),

the measurements will yield uncorrelated parameter uncer-
tainties as described by Gutenkunst et al. (2007b), as a con-
sequence of the model structure (Gutenkunst et al., 2007a).
However, recent studies have revealed that it is not essential
to have the true unknown parameter values to constrain the
model predictions (Gutenkunst et al., 2007a); rather, the pre-
dictions can be constrained with a modest number of experi-
ments in which the parameter set is obtained from collective
parameter fitting (Gutenkunst et al., 2007a) as sets of param-
eters can yield similar predictions. Therefore, the collective
parameter fitting could reduce the amount of experimental
data required to estimate parameters (Gutenkunst et al.,
2007a) and can increase the discrimination between them
(Maiwald and Timmer, 2008). The correct description of
the system is important because uncertainties in the structure
of the model are often a source of uncertainty in predictive
simulations (Højberg and Refsgaard, 2005).

Other concerns in modeling biological systems related to
the discrimination of process, integration of system descrip-
tions, data interpretation and understanding of biological
process are discussed by Vargas-Villamil and Tedeschi
(2014) and schematically represented in Figure 2. The repre-
sentation shows the potential relations of DIPA centered
in biological questions where different methodologies
(e.g., multiexperimental fitting, system identification and
holistic design) related to previously studied processes
(e.g., discrimination of process, discovery of biological rela-
tions, integration of system, uncertainty reduction of param-
eters or predictions and quantification of parameters) can aid
the understanding of biological aims. In this research proc-
ess, the study of parameter values, function errors, sloppiness
(insensitivity to parameter value changes), identifiability
profile likelihood (PL) surface and computational efficiency
could have a central role.

In the proposedMIA, a deterministic approach, it is under-
stood that the full use of all available quantitative informa-
tion about a system (data and scientific information) during a
scientific process allows the researcher to obtain an integral
quantitative structural description of that system as well as
the parameter values linked to its structure. The correct
description of the system is important because uncertainties
in the structure of the model are often a source of uncertainty
in predictive simulations (Højberg and Refsgaard, 2005).
Therefore, this approach can help describe and predict the
biological system more efficiently. However, this complex
process requires new mathematics, statistics and computing
resources (Maiwald and Timmer, 2008). It can be hypoth-
esized that MIA has the potential to restrict the structural
description of the system and the time invested in and steps
between the collection of experimental data and the acquis-
ition of meaningful quantitative information.

To evaluate MIA, data from a previous saccharina experi-
ment were used to perform a case study. Sugarcane
(Saccharum officinarum) is a resource that can be used in
times of drought or flooding to improve production efficiency
in ruminants (Preston, 1977). Similar to other fibrous
residues, it has low nitrogen, mineral, and vitamin contents

Figure 1 Conceptualization of deductive and inductive approaches within
the integral research cycle. DA= deductive approach; IA= inverse
approach.

A multi-inverse approach in applied animal science

s239



and a high cell wall content that can be improved through
solid-state fermentation (SSF) to facilitate its use in ruminant
feeding. The final enriched product of this process, which has
better nutritional characteristics than sugarcane or its
residues, is called saccharina (Elías et al., 1990). Saccharina
can be prepared with different types of feed (Ramos et al.,
2006). Although scientific papers related to saccharina and
its derivatives are limited in number and diverse in focus, they
have demonstrated the potential of this substrate for use in
ruminant diets (Ramos et al., 2006).

Fermented saccharina can be used with whatever grain-
based feeds and/or byproducts are economically and nutrition-
ally accessible to the producer. This flexibility is advantageous
for the local producer, but nutritional evaluation of the resulting
feeds is difficult. The nutritional evaluation of saccharina diets is
complex because the development of the product includes two
fermentation processes: the SSF outside of the animal and the
microbial fermentation inside the animal’s rumen. Outside the
animal, the high nutritional content of sugarcane is used as an
energy source for the growth of microorganisms (Ramos et al.,
2006), which increases the true protein content and fiber
degradation, thereby decreasing the fiber content (Ramos et al.,
2006). A nutritional diversity of food components such as sac-
charina is typical in modern nutritional databases in applied
animal science (AAS). Inmany cases involving complex systems,
it is possible to find several similar processes, as is the case for
SSF and other saccharina-based diets.

Researchers can employ two primary approaches to esti-
mate parameters such as those required for saccharina study:
(1) obtain parameter values through fitting noncomplex
empirical or mechanistic models, which reduces the size of
the database and decreases the integration of the system
evaluation process or (2) obtain the values through integral
collective parameter fitting (multifitting) of complex models
(multiparameter models), which increases the complexity of
the system and the uncertainty of the parameter values
(Vargas-Villamil and Tedeschi, 2014). The decision of which
approach to employ is important because it will not only
determine the accuracy and constraints of the predictive

model for future simulations and parameter restriction but
also define the resources needed to study the system.

In AAS, researchers have addressed the above-mentioned
dilemma using a statistical Bayesian approach, fitting more
complex models to greater AAS data and making approaches
(1) and (2) possible (Gelman et al., 1996; Huang et al., 2012;
Reed et al., 2016). Bayes theorem is used for updating the a
priori probability distribution of the biological parameter
when additional evidence (observed data) is obtained.
A likelihood function (statistical model) is assumed for the
observed data, and Bayes theorem is used for obtaining
the a posteriori probability distribution for the parameter.
Regarding the model, in AAS Bayesian research, an assumed
correct mechanistic model is used. Bayesian inference
(i.e., parameter estimation and calculation of highest pos-
terior density intervals) is based on the posterior probability
distribution of the parameter. In contrast, DIPA focuses on
the deterministic structural description of a system and the
estimation of the true unknown values of the parameters
linked to the structural description of the system.

When studying model structure, it is valuable to construct
and evaluate a useful best-fitted model according to the rec-
ommended steps for integrating a DIPA (Vargas-Villamil and
Tedeschi, 2014). Therefore, with the proposed MIA, this
paper will (1) design an inverse model in terms of biologically
meaningful relationships and parameters focused on comple-
mentary data; (2) develop an inverse mechanistic model set
from simple to complex structures, where the complexity
increases in accordance with the understanding of the prob-
lem being solved and where the research cycle as discussed
previously (Figure 1) can be accelerated by the number of mod-
els evaluated; (3) fit models to complementary data; (4) evaluate
model convergence; (5) evaluate the models; (6) evaluate the
parameters; and (7) assess model adequacy. To accomplish
these steps and obtain the parameter values, data from the pre-
vious saccharina experimentmentioned abovewere used to per-
form an MIA case study (Godínez Juárez, 2014), and a model
named Paracoa was built. The complexity of the system, which
has limited the modeling approaches used for its evaluation

Figure 2 Schematic representation of a deterministic inverse problem approach (DIPA).
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(Ramos et al., 2006) and their pertinence for local producers,
made saccharina tropical feed suitable for a case study of nutri-
tional evaluation via DIPA in AAS. Preliminary results were pub-
lished in Advances in Animal Biosciences for the 9th Workshop
onModeling Nutrient Digestion and Utilization in Farm Animals
(Vargas-Villamil et al., 2019).

Material and methods

The term ‘multi-inverse approach’ was coined based on con-
cepts described by Vargas-Villamil and Tedeschi (2014) to
describe system evaluation based on DIPA (Figure 2), which
explores the use of multiparameter models, multifitting, and
multimodal solutions to discriminate parameters, interpret
data and expand the integral understanding of an AAS sys-
tem (Vargas-Villamil and Tedeschi, 2014). For this purpose, a
mechanistic frame model (Figure 3) called Paracoa, which
means ‘rainbow’ in the Comanche language, was developed
based on the concept of mass balance through the design of
a compartmental system structure. The premise of this frame
model is that there exists a basic biological structure from
which to extend equations for the study of different biological
concepts or theories as well as for MIA evaluation. The model
describes four biological processes: voluntary feed intake
(VFI), degradation, passage rate and mass transformation
from postruminal biomass to animal tissue. Amultiparameter
degradation model (Figure 3) was developed and integrated
as a submodel into the Paracoa model. The multiparameter
degradation model was also used separately to obtain the
parameter values used in the Paracoa model.

To develop and construct the best-fitted Paracoa inverse
model set to improve the structural description of the biologi-
cal system, different theories regarding the relation between
model structure and system behavior were investigated. The
effects of treatment, model structure, parameter type,
parameter value and objective function value (OFV) were
studied. Finally, the best-fitted Paracoa model was chosen
and evaluated. Descriptions of the settings, abbreviations
and descriptions of the variables used, globally and locally
adjusted parameters and constant and initial state values,
and a description of the Paracoa model are provided in
Supplementary Tables S1 to S4, respectively. In this work,
the difference between globally and locally adjusted param-
eters is that the former are available to or associated with all
the models evaluated, whereas the later are available to or
associated with only one model. A detailed description of the
quality assurance evaluation of the Paracoa model can be
found in Supplementary Material S1, and copies of 2-P
parameter Paracoa model code, data and results obtained
during the particle swarm (PS) evaluation are provided as
supplementary material files (Mod_MIA_(ParSwarm)_LV
0911_2019.cps, Data_MIA_(ParSwarm)_LV 0911_2019.txt
and Results_MIA_(ParSwarm)_LV 0911_2019.txt).

Software resources
The Paracoa and multiparameter degradation models were
built using Stella v10 (Doerr, 1996). They were then

reconstructed in CellDesigner v4.3 because Stella v10 is
based on XMILE and CellDesigner v4.3 is based on SBML
structures; although both structures are XML representations
of system dynamics models, they are not compatible. The first
standard is more suited for the diagrammatic building of
models or online model presentation, and the second is more
suited for the computing solution of models; both processes
were required in developing Paracoa. Due to its SBML
compatibility, CellDesigner v4.3 was used as a link between
Stella v10 and the SBML software used in this study (COPASI
v4.8. and SBMLSimulator v1.2.1). The Paracoa and degrada-
tion models were exported from CellDesigner v4.3 to COPASI
v4.8 (Build 35) (Mendes et al., 2009) and SBMLSimulator
v1.2.1 (Dörr et al., 2014), respectively. The decision regarding
the software used for each model was made based on the
complexity of the model, the mathematical methods and
the usability of the software for similar future evaluations.

Optimization methods and settings
An array of Paracoa model (1 × 22), that contain three state
variables, was adjusted to 44 curves (22 intake and 22weight
curves) to estimate 2-to-4-global-parameter set (il, iT, kkil
and kkiT ), counting 66 state variables for the total
Paracoa array. The method used for optimizing the degrada-
tion and Paracoa models was PS (Kennedy, 2010). The EvA2
Workbench module, developed in SBMLSimulator v1.2.1
software (Kronfeld et al., 2010), was used for parameter opti-
mization of the multiparameter degradation model, and the
Parameter Optimization Task in COPASI was used for the
Paracoa model. The initial time, final time, differential equa-
tion solver and quality function were the same for all evalu-
ations (Supplementary Table S1) unless stated otherwise. The
initial, modified and potentially best-fitted Paracoa models
were evaluated through statistical comparison of the root
mean square, although other statistics can be used for the
same purpose (Tedeschi, 2006).

The optimized Paracoa parameters were the VFI index
(iI ), transformation index (iT ), increase in the VFI index
(kkiI ) and increase/decrease in the iT indexes (kkiT ). The term
‘transformation’ refers to the difference between the mass
absorbed and the mass converted to animal gain. In addition,
the 22 initial state variables, such as metabolic BW (MBW),
were selected for parameter optimization but not considered
for evaluation. The degradation constants used during the
Paracoa model evaluations were obtained through param-
eter estimation of the multiparameter degradation model.
These global optimized parameters were as follows: the frac-
tional degradation rate (kd ) and the increases in the poten-
tially degraded fraction (kkfP ), the nondegradable fraction
(fN ), and the potentially degradable fraction (fP ). An array
composed of four degradation models was adjusted to the
four level-of-corn datasets, and all models were fitted on a
single run using global parameters.

Evaluation of biological theories
The nutritional data used in this paper were published pre-
viously (Godínez-Juárez et al., 2017) in a study evaluating
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the VFI and the productive behavior of sheep fed saccharina
with ground corn and ruminal degradation in situ in bovines.
The animals evaluated were 24 growing Katahdin × Pelibuey
sheep, with an initial average weight of 17 ± 3.0 kg, and the
treatments were as follows: saccharina (S)þ 10% corn (T10),
Sþ 20% corn (T20), Sþ 30% corn (T30) and Sþ 40%
corn (T40).

Here, an initial Paracoa model, a frame model, was opti-
mized to estimate the iI and iT parameter values using the
experimental database from Godínez-Juárez et al. (2017)
as a reference for the posterior optimization evaluations.
Then, biological theories regarding the structure of the

system were studied. Details of the procedures are described
below.

The effects of corn levels on the parameters and OFV were
evaluated through COPASI optimization of the Paracoa model.
The dataset obtained from the experiment described above was
divided into four treatments representing different levels of corn
in the diet (T10, T20, T30 and T40) and evaluated according to
its interaction with the number of parameters fitted, the type
(iI and/or iT v. passage rate) of parameter and the time interval
(0 to 13, 17 to 33, 35 to 48, 49 to 62 and 63 to 77 days) in the
following procedures: (a) first, every level of corn in the diet was
contrasted to 0-parameter, 1-parameter and 2-parametermodel

Figure 3 Simplified scheme of the Paracoa and degradation models of ovine. VFI= voluntary feed intake.
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optimization, where the model parameter number refers to the
iI and/or iT parameters. (b) Second, every level of corn in the diet
was contrasted to every time interval. For parameter(s) that was/
were not studied, the parameter value(s) was/were considered
to be the same as the initial Paracoa model estimate. (c) Third,
every level of corn in the diet was contrasted to 0-parameter and
1-parameter model optimization, where the number of the
model parameter refers to the passage rate parameter.

The effects of biological structure on the parameters and
OFVs were evaluated through COPASI optimization of the
Paracoa model. The Paracoa model was modified four times
to evaluate whether a detailed description of VFI (VFIM),
postdegradation DM transformation related to animal age
(TAgeM) or iT related to the level-of-corn treatment (TInc
and TDec) could improve the description of the behavior of
the system. The iT Paracoa modification described an
increase (TIncM) or decrease (TDecM) in the iT parameter val-
ues in response to the level-of-corn treatment. Additionally,
the 2-parameter control (initial Paracoa model) was evalu-
ated. VFIM, TIncM and TDecM are presented as extended
equations in Supplementary Table S4.

The construction, evaluation and biological meaning of a
theoretical best-fitted model (the final Paracoa model) were
accomplished through (a) the construction of a potential
best-fitted model, (b) a numerical solution of the best-fitted
standardized model, (c) the biological meaning of the best-
fitted model, (d) parameter evaluation (correlation matrix
and Fisher information matrix (FIM), (e) PL and PL contour
(Schaber, 2012) and (f) model adequacy. The construction
of a 4-parameter model (the final Paracoa model) was com-
pleted as an outcome of previously described evaluations
where the best hypothetical descriptions of the biological
relations and parameters were used to build the model.
The final model was evaluated and run three times. The
standardized model was a copy of the best-fitted model with
a single initial animal weight, as shown in Supplementary
Tables S1 and S3.

Finally, the OFV obtained with COPASI was used to
evaluate the model adequacy between the initial model

(2-parameter model) and the potentially best-fitted model
(4-parameter model) with both VFI and MBW. The model
adequacy was evaluated globally and by treatment. Globally,
the evaluation was performed using a 95% confidence interval
for the differences between the means when the samples were
paired or dependent (Zar, 2010) because the normality
assumption was met for the variable differences. However,
by treatment, the evaluation was conducted based on 95%
nonparametric bootstrap confidence intervals (Chihara and
Hesterberg, 2011) because the normality assumption was not
satisfied. Ten thousand nonparametric bootstrap samples were
randomly selected to determine the observed differences in the
determination of each confidence interval. The software utilized
for global and per-treatment best-fit evaluations was
STATGRAPHICS Centurion XV v. 15.2.06 (StatPoint, 2007).

Results

Objective function value and parameter values
Fitting the initial Paracoa model to the data by the level of
corn reduced the OFV to a mean of 2.4411 (Table 1), whereas
without grouping, the mean was 7.6656 (Table 2). The value
consistently increased from T10 to T40 (1.1394, 2.3335,
3.0831 and 3.2086, respectively). The trend was similar only
when the 1-parameter model, not the 2-parameter model,
was optimized (OFVil= 2.4685 v. OFViT= 2.7243). The
OFV mean obtained from the 2-parameter, iI-parameter
and iT-parameter fitting was extremely close to the mean
obtained from the level-of-corn fitting (2.5447 v. 2.5447,
respectively), indicating potential additive effects. The reduction
in the number of fitted parameters also had a minor effect on
the mean parameter values of 0.0775/kg and 0.1730/kg for
iI-parameter and iT-parameter fitting, respectively, compared
with the values from 2-parameter fitting (0.0776/kg and
0.1782/kg). However, the parameter tendency differed with corn
level. The iI values increased for every level of corn both for the
2-parameter (0.0671/kg, 0.0734/kg, 0.0752/kg and 0.0946/kg)
and the iI-parameter fitting (0.0673/kg, 0.0742/kg, 0.0752/kg
and 0.0946/kg), whereas iT had a peak at T20, with its next

Table 1 Effects of corn level on parameter values and objective function value (OFV) for the level of corn

Kind of run T101 T20 T30 T40 Mean

Without parameters (1.32613)4 (2.43031) (3.18429) (4.05484) 2.7488925
il2 0.06737033

(1.14305)
0.0742011
(2.38355)

0.0746042
(3.12389)

0.0941422
(3.22382)

0.07757945
(2.4685775)

iT 0.167863
(1.32569)

0.219035
(2.39616)

0.121532
(3.12347)

0.18378
(4.05213)

0.1730525
(2.7243625)

iI and iT 0.0671475il

0.196206iT

(1.13941)

0.073484
0.23396
(2.33358)

0.0752893
0.127692
(3.08314)

0.094687
0.155113
(3.20861)

0.07765195
0.17824275
(2.441185)

Mean 1.202716 2.371096 3.11016 3.494853 2.54470833
2.54470625

1Treatments: T10= saccharina (S) þ 10% corn; T20= Sþ 20% corn; T30= Sþ 30% corn; T40= Sþ 40% corn.
2Parameters: il= voluntary feed intake index; iT= transformation index.
3Adjusted value.
4OFV= objective function value.
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highest level at T10 and T40, in both the 2-parameter
(0.1962/kg, 0.2339/kg, 0.1276/kg and 0.1551/kg) and
iT-parameter fitting (0.1678/kg, 0.2190/kg, 0.1215/kg and
0.1837/kg).

These results show that reducing the amount of data
decreased the mean OFV (0.2979) and mean iT values
(0.1375/kg), but the iI value was closer (0.0775/kg) to that
reported previously. As observed in the level-of-corn fitting
mentioned above, the OFV and parameter value means
(grouped by corn level × time interval) had an additive effect
when the mean was calculated by the level of corn or time
interval because they were the same (Table 2). However, the
same trend was not found when a corn level × time interval
group was arbitrarily chosen. The individual fitting of arbi-
trarily chosen data grouped by every six animals (T20 × 49
to 62-days group) produced means (iI= 0.0785/kg,
iT= 0.6214/kg and OFV= 0.0391) that differed from those
found when fitting the six-animal groups as a whole
(iI= 0.0753/kg, iT= 0.3/kg and OFV= 0.1769).

The passage rate parameter had a minimal effect on OFV
when it was estimated for every level-of-corn treatment
(mean 2.7388) compared with the Paracoa model without
the parameter (mean 2.7488), both of which were optimized
only with initial values. The reduction was 0.38% (0.0104),
whereas the mean reductions in iI and iT under the same con-
ditions were 10.20% and 0.89%, respectively. It is important
to note that the sum of these reductions was equal to that
obtained when iI and iT (2-parameter fitting) were estimated

together (11.09%) due to the potential additive effect of
these parameters.

After the best-fitted model (4-parameter model) was
chosen as discussed below, the best-fitted standardized sim-
ulation (Vargas-Villamil and Tedeschi, 2013), run in COPASI,
showed that the final weight increased with the level of corn
in the diet (T10= 25.59 kg, T20= 26.47 kg, T30= 27.35 kg
and T40= 28.23 kg) (data not shown). The final weight
increase was not observed for all treatments during the direct
weighing of the animal (T10= 24.50 kg, T20= 24.80 kg,
T30= 27.50 kg and T40= 26.16 kg) but as a linear increase
in weight gain similar to that observed in this work (6.00,
7.00, 8.17 and 9.33 kg, respectively) (Godinez-Juárez et al.,
2017). The weight gain difference from T10 to T40 was
0.69 kg (26%), and the value calculated from direct weighing
of the animals was higher than that obtained with MIA
(Godinez-Juárez et al., 2017). The absolute soluble fraction
flow (calculated from 0 h of ruminal incubation) increased
with the level of corn from T10 to T40 (0.0477 kg/day),
and the effective nonsoluble degradation flow (calculated
from the potential degradable fraction) increase was fourfold
higher than that at 0 h and was more important by fourfold
(0.1920 kg/day) (Table 3).

Parameter evaluation
As shown in Supplementary Table S5, all the parameter combi-
nations had high capacity of parameter restriction except the
combinations in which iT was involved (Figures 4 and 5); FIM
was interpreted as the sensitivity to infinitesimal changes.
However, this conclusion is based on the assumption that the
method used is accurate, which is discussed below. If the model
structure modifies the relationships among the parameters,
data, model and fitting, the method will change as a result
of a change in structure, and thus the correlations and the qual-
ity of the estimation results will change (Li and Vu, 2013).

The fitting results from the 2-parameter model yielded an
iI x iT correlation of 0.7299, with an FIM value of 277 164 in
the FIM matrix for the same il x iT combination (data not
shown). The increase in the number of parameters modified
the parameter relationships and FIM value (Supplementary
Table S5). As shown in the table, relative to the correspond-
ing value obtained by 2-parameter fitting, the iI x iT correla-
tion value greatly decreased to –0.2188, but the FIM value
increased (303 638) compared with those obtained by
2-parameter fitting. These results can be interpreted as
revealing a reduction in the relationship between the param-
eters with a small increase in the capacity of the experiment
to constrain both parameters, a valuable phenomenon during

Table 2 Effects of model structure on the parameter values and
objective function value (OFV)

Model
modification1 iI 2 (1/kg) iT (1/kg)

kkil (1/unit)/kkiT
(kg/kg) OFV

– 0.0788265 0.174694 –/– 7.66566
VFIM 0.0578078 0.17289 0.0135722/– 7.13916
TAgeM 0.0780346 0.398234 –/0.0138645 7.50842
TIncM 0.0788265 0.174694 –/9.72673 × 10−17 7.66566
TDecM 0.0787156 0.142901 –/0.0401004 7.96895
VFIM3

TAgeM
0.0572283 0.401990 0.0135517/

0.0140821
6.97367

1Modification of Paracoa model as described in Supplementary Table S4:
VFIM= voluntary feed intake; TAgeM= postdegradation DM transformation
related to animal age; TIncM= iT related to the increase-of-corn treatment;
TDecM= iT related to the decrease-of-corn treatment.
2Parameters: il= voluntary feed intake index; iT= transformation index; kkil=
increase in il; kkiT= increase in iT.
32-parameter model.

Table 3 Standardized effective flow from the rumen of DM diets prepared with saccharina at different levels of corn

Effective DM flow T101 (kg/day) T20 (kg/day) T30 (kg/day) T40 (kg/day)

Solubilized 0.490252584 (83%) 0.5160682016 (78%) 0.5322388595 (71%) 0.5380075264 (65%)
Nonsoluble 0.1024541972 (17%) 0.1555621278 (24%) 0.2194017534 (29%) 0.2945028762 (35%)
Total 0.5927067812 0.6716303294 0.751640613 0.8325104025

1Treatments: T10= saccharina (S)þ 10% corn; T20= Sþ 20% corn; T30= Sþ 30% corn; T40= Sþ 40% corn.
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fitting evaluations. However, the iT FIM value was reduced
from 123 131.000 to 106.463, likely due to the emergence
of a new correlation with the kkiT parameter during the
4-parameter fitting (0.7258). In contrast, a high correlation
between iI and kkil (–0.9202) had no effect on either iI or kkil
FIM values, indicating a high capacity of the experiment to
constrain these parameters. This capability may be a conse-
quence of the type of correlation presented in the parameter
relationship (Vargas-Villamil and Tedeschi, 2014) or of the
quality of the available data (Ashyraliyev et al., 2008; Li
and Vu 2013) that indicate differences between the
utility of the correlation and FIM for parameter evaluation.

The other parameters all had high FIM values due to low cor-
relations, as shown in Supplementary Table S5.

Best-fitted model adequacy
The global evaluation of the 4-parameter best-fitted model
(BM) and its comparison with the 2-parameter initial model
(IM) for VFI and MBW output variables showed that zero
was not within the range of the 95% confidence intervals
(VFI, �0:00522 � �VFI ;BM � �VFI;IM � �0:00047; MBW,
�0:03425 � �MBW;BM � �MBW;IM � �0:00582). Thus, the
averages were significantly different; moreover, because
the limits were negative, the OFVs for VFI and MBW in the

Figure 4 Parameter profile likelihood (PL) contour (a) and PL (b) for the 2-parameter Paracoa ovine model. Parameters: iI= voluntary feed intake index;
iT = transformation index; OFV= objective function value.

Figure 5 Parameter profile likelihood (PL) contour (a to f) and PL (g) for the 4-parameter Paracoa ovine model. Parameters: iI= voluntary feed intake index;
iT= transformation index; kkil= increase in il; kkiT= increase in iT. OFV= objective function value.
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BM were smaller than those obtained in the IM, at least
for 0.00047 and 0.00582 units, respectively. However, the
evaluation of BM at T10, T30 and T40 for the VFI and
MBW output variables showed that zero was not within
the 95% bootstrap confidence intervals, indicating signifi-
cant differences between the BM and IM output variables.
Since the limits for T10, T30 and T40 were negative for
VFI, except for T30 and MBW, the OFVs in the BM were
smaller than those estimated in the IM for these treatments.
T30 and MBW had positive limits, indicating an increase in
BM. Because zero was within the range of the 95% bootstrap
confidence interval for T20, the differences in VFI and MBW
were not significant. The 95% confidence limits for the four
treatments were as follows: 10% and VFI, �0:00637 �
�VFI;BM � �VFI;IM � �0:00019; 10% and MBW, �0:07849
� �MBW;BM � �MBW;IM � �0:01214; 20% and VFI,
�0:00257 � �VFI;BM � �VFI;IM � 0:00514; 20% and MBW,
�0:02280 � �MBW;BM � �MBW;IM � 0:00579; 30% and VFI,
�0:00768 � �VFI;BM � �VFI;IM � �0:00108; 30%andMBW,
0:01062 � �MBW;BM � �MBW;IM � 0:01680; 40% and VFI,
�0:00998 � �VFI;BM � �VFI;IM � �0:00181; and 40% and
MBW, �0:05463 � �MBW;BM � �MBW;IM � �0:03773. These
results showed that globally, BM was significantly lower than
IM. However, this was not the case when the model adequacy
was evaluated per treatment. Nevertheless, most treatments
showed an improvement in OFV for BM.

Discussion

The evaluations show that in the modified Paracoa model
(Table 2), which is described in detail below, the VFIM had
a lower OFV than the modified model describing iT as a con-
sequence of age (TAgeM), whereas the latter had a lower
OFV than that found as a consequence of the level of corn
(TIncM and TDecM). These results are similar to those
reported when treatment effects were studied. These results
are feasible indicators of a biological effect of the VFI (iI ) and
iT processes on weight gain. Therefore, a 4-parameter
Paracoamodel was built, extending the initial Paracoamodel
(2-parameter model) to a potential BM that better explained
the biological system studied.

Table 2 demonstrates that the 4-parameter Paracoa
model was the BM, that is, the most effective model (mean
6.9737), among the studied models. Additionally, the results
showed that repeating the optimization produced very sim-
ilar OFV and parameter results, although they were not as
similar as those obtained with the 2-parameter models (data
not shown). This difference may be a consequence of a less-
even surface near the global minimum than that for the
unmodified Paracoa model. This issue is minor but may
be relevant if the number of parameters is higher than evalu-
ated here.

Biological evaluation of the best-fitted model
Animal weight gain was due to increased degradation
instead of solubilization at 0 h in the absolute fraction flow

(Table 3). In relative values, the soluble fraction flow was
reduced by 18%, whereas the nonsoluble fraction increased
by the same quantity, indicating that the increase in weight
gain was due to the increase in nonsoluble substrate
(degradedmatter) (Table 3). However, all the treatments con-
tributedmore than 60% of the soluble fraction flow to animal
nutrition in the rumen (Table 3). The reduction in soluble frac-
tion flow is a function of the reduction in effective degrada-
tion of the saccharina (Godinez-Juárez et al., 2017), possibly
due to microbial uptake of substrate outside of the animal, as
reported previously (Ramos et al., 2006). On the other hand,
the increase in the nonsoluble fraction is a consequence of
the approximately 50% reduction in fiber (Godinez-Juárez
et al., 2017) due to microbial enzymatic processes or the
maximization of microbial activity due to sugar levels
(Wang et al., 2017) before the feed is consumed.
Additionally, the increase in DM flow for each level-of-corn
treatment (Table 3) was a consequence of the VFI increment.
This VFI increase is common in saccharina diets prepared
with or mixed into different types of feed (Ruiz et al.,
2005) as a consequence of fiber content (Ruiz et al.,
2005). In addition, it was mathematically demonstrated that
for the saccharina case, the distance between the data and
the model was reduced consistently for changes in some
specific parameters, such as VFI (il ), (iT ) and animal age.
However, under the study conditions, other variables did
not have the same impact on the behavior of the system
(degradation rate, feed efficiency and passage rate) or impact
the system when the parameter describing the increase in the
VFI was fixed at zero during simulation for every level of corn,
kkil= 0/unit from T10 to T40 of corn level (0.5072, 0.4994,
0.4916 and 0.4839 kg/day) (data not shown). These results
may be a consequence of the interaction or behavior of
the concentration of soluble substrate in the diet, conversion
of mass or other factors. For feed efficiency, the results are
consistent with the classic results when feed efficiency is
calculated directly for the same data (Godinez-Juárez
et al., 2017).

Parameter evaluation
In general, biological parameters are linearly correlated
(Gutenkunst et al., 2007a); therefore, identifying the true
unknown parameter values may be difficult (Li and Vu,
2013). However, it is important to evaluate parameter corre-
lations because some authors report that correlated param-
eters cannot be identified (Li and Vu, 2013). Furthermore, the
study of correlation is important because high correlation
complicates the process of estimating the true unknown
parameter value (Ashyraliyev et al., 2008; Li and Vu,
2013); in the present work, the Paracoa model was no
exception.

The weighted sum of squared residuals (WSSR) can be
considered the log-likelihood function for normally distrib-
uted measurement noise, and it can be minimized for the
estimation of biological parameters (Schaber, 2012). In some
cases, the estimated parameter may not be uniquely esti-
mated (not identifiable). However, such parameters are
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typically not evaluated (Schaber, 2012) because few existing
methods can perform a complex parameter identifiability
analysis (Raue et al., 2009; Schaber, 2012). PL can be used
to evaluate parameter identifiability for multiparameter
models (Raue et al., 2009; Schaber, 2012; Kreutz et al.,
2013). This method reoptimizes the WSSR for all parameters
to obtain the PL for each fitted parameter (Schaber, 2012)
and assesses whether the reoptimized WSSR exceeds the
confidence limits based on the PL contours or PL ratios
(Schaber, 2012). The PL evaluates the change in the value
of a parameter component when fitting the model to the data
(Kreutz et al., 2013). Additionally, the WSSR can be used to
run a parameter scan to evaluate the sloppiness and level of
correlation between parameters (Raue et al., 2009).

Figures 4 and 5 display the PL surfaces in dimensional
space as contour plots (Figures 4a, 5a to f) and profiles
(Figures 4b and 5g). The PL contour of the PL function is
the WSSR as calculated by COPASI (Schaber, 2012). In the
PL contour representations, the black lines describe contours
for 90%, 80%, 70% and 60% confidence thresholds; how-
ever, some contours were not well delimited because the
range used for the WSSR optimization due to a high resolu-
tion requires extensive computational resources. The plus
symbol shows the point where WSSR is minimal. In the
PL profiles, the PL contours are represented in a one-
dimensional LP where gray lines describe the same confi-
dence thresholds as shown for the PL contour representations
(in the downward direction). Contours represent surfaces of
constant behavior, where the width and long ellipse direc-
tions describe the stiff and sloppy direction of parameters,
and the parameters of a model can be divided into stiff
and sloppy parameters. The stiff parameters can be deter-
mined with great certainty, and the sloppy parameters can
vary by orders of magnitude without generating great
changes in model behavior (Chis et al., 2016).

The PL analysis showed that the initial 2-parameter
Paracoa model and the final 4-parameter Paracoa model
described in this paper had parameters that were identifiable
(Table 4, Figures 4b and 5g). It is important to note that the
previously obtained correlation values did not accurately
describe the relationship between kkiT and iT. However,
the FIM provided a precise description of all parameter

uncertainties (Table 4, Figures 4b and 5g). It was possible
to identify a well-defined sloppiness structure between iI
and kkil and between iI and kkiT as well as, to a minor extent,
among kkiT, kkil, and all the parameters for the 4-parameter
model (Figure 4). It is important to note that two of these
relationships had low correlations (iI × kkiT and
kkiT × kkil ), and that the other relationship, although show-
ing high correlation, had low uncertainty. These findings
illustrate the importance of 4-parameter PL (Figure 4) to
expand the evaluation of parameter behavior.

The PL is useful to discriminate the uncertainty linked to a
specific error measure such as OFV. OFV reduction can be
interpreted as the consequence of a better structural descrip-
tion of the Paracoa model. Previous evaluations support this
interpretation because the 4-parameter BM was modified
with expanded equations that describe the increase in iI as
a result of the increase in VFI with the level of corn and iT
due to age. However, although the uncertainty was reduced
for the iI parameters, the iT uncertainty increased in value,
which could be explained as a consequence of discrimination
of a new biological factor that was not related to the corn-
level treatments. The iT uncertainty with the 2-parameter
model was one process that was split into two different proc-
esses in the 4-parameter model, increasing the remaining
uncertainty in iT when fitted with the same data.
According to the PL results, this effect is a problem not of
model design but rather of experimental design. Thus, the
next step is to determine how to increase the ability of the
experiment to constrain the parameters.

The PS interaction limit used for 4-parameter PL in COPASI
software (Figure 4) was 15, far from that used for the
2-parameter PL (100, Figure 4) and previous evaluations
(2000) (data not shown). These limits were fitted after evalu-
ating the approximation to the global minimum with PS
method, the objective of the evaluation and the resources
required for accomplishing the objective. In the case of the
4-parameter PL (Figure 5), the optimization spanned approx-
imately 12 days, but the days required to scan a parameter to
obtain every PL image could reach 1600 with high interaction
limits. The limit used was demonstrated to be useful for the
objectives of this study. Nevertheless, the PL contours were
not as smooth (Figures 4a, 5c to 5f), wide (Figure 5a and d) or
well defined (Figure 4a) as those obtained with higher PS
iteration limits (Figures 4b and 5g).

Inverse problem considerations
The MIA is an inductive (bottom-up) approach; however, it
can be also considered a manual deductive (top-down)
approach because during the development of direct mecha-
nistic models, the researcher constructs a model and evalu-
ates it for prediction accuracy. Then, the researcher returns to
the model to attempt to improve it and search for parameter
values that better predict the data. The process is repeated
several times until the researcher obtains the BM, at high cost
in terms of time and resources. This is an inverse problem
process that is conducted manually, but MIA can accelerate

Table 4 Upper limits of the parameter profile likelihood and objective
function value (OFV) of the Paracoa model

Element
evaluated1

2-P global
optimization

4-P global
optimization

OFV 7.67 6.97
il (1/kg) 0.027 0.015
iT (1/kg) 0.258 0.57
kkiT (1/unit) – 0.015
kkil (kg/kg) – 0.015

P= parameter.
1Element evaluated: iI= voluntary feed intake index; iT= transformation index;
kkil= increase in il; kkiT= increase in iT.
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this inefficient process by integrating data, hypotheses and
processes. Therefore, it is possible to develop a multipara-
meter model with submodels that describe each of the differ-
ent types of AAS processes (e.g., physical, metabolic) and
search for different data, where the experiments are the focus
of every type of process as described for the submodels. Then,
the researcher can run an optimization and obtain global
parameter values. During this process, one of the principal
issues encountered may be a potential increase in the redun-
dancy of the processes that limit the model size and correct
description of the system because the model has a repeated
process.

During the MIA process, it is possible to evaluate the
system more thoroughly by finding an initial value for every
animal parameter (e.g., initial animal weight) and estimating
global parameters (e.g., weight gain), as demonstrated in
this work. With this inverse procedure, the elements of the
models can be isolated, and the model structure itself
can be studied. The additive effect found throughout this
paper demonstrated that such an approach is possible.
Nevertheless, it is important to have different types of data
that allow the researcher to discriminate parameters. It
seems that the MIA and Bayesian approaches pursue the
same goals. However, these approaches can serve as comple-
mentary modeling strategies in AAS. The MIA approach
focuses on developing the structure of mechanistic models
that best describes the biological system. Once the model
structure has been determined, the Bayesian approach can
be used to obtain posterior distributions for the model
parameters.

MIA can improve the understanding of a system because
the multifitting aids the discrimination of the biological
processes. The effect of the multifiting on the prediction
was not evaluated in this paper but likely depends on
parameter sensitivity, the model and the data, similar to
the other factors described in this paper. Additionally, the
researcher can use MIA with individuals or groups and find
a parameter value set with the best-fitting values. Then, the
researcher can find the global minima, at which the model
behavior has the least sensitivity to parameter change. The
researcher can evaluate the areas adjacent to the global mini-
mum or the presence of several minima (multimodal solution)
and their parameter relationships in the parameter space,
obtaining information useful for evaluating both the biologi-
cal system and the MIA procedure. This approach can be as
useful for understanding a system as the direct approach is
for predicting a system.

MIA is not a better way to describe a complex biological sys-
tem than current AAS approaches, but it can be a better way to
obtain an integral quantitative structural description of the
system. The models obtained from a MIA process are not
different from those obtained from classical methodologies;
the improvement, utility and users depend on the objective
of the model. The difference between anMIA process and tradi-
tional approaches is that an MIA processes provides a better
understanding of AAS systems, which is more important for very
complex systems than for simple systems.

MIA is focused on the understanding of the parameter
space, the minimization of the distance between the data
and the model, and the methodological evaluation of specific
structures of the model as reported for structural evaluations
(Muñoz-Tamayo et al., 2017). The evaluation and definition
of a model structure ‘is a challenging task that represents the
core of the modeling building process’; however, it requires
high levels of statistical, mathematical and computational
skills that are not common in animal science, which explains
the limited number of published papers on this topic.
However, we need to be prepared for progress in precision
farming and omics technologies and for the impact of infor-
mation technologies in science to obtain the most from the
resulting big data in animal science (Muñoz-Tamayo
et al., 2017).

Finally, prediction is not the most important element
when evaluating the usefulness of a model. System under-
standing is as important as prediction, as the usefulness of
the model is a consequence of such understanding. In this
sense, the sentence ‘all the models are erroneous but there
are some models that are useful’ (Law, 2009) can be
extended with ‘and the usefulness of a model depends on
nonerroneous assumptions’.

The MIA was able to significantly reduce the OFVs by
improving the biological description of the system and was
effective for evaluating the methodology used. This study
also revealed the roles that treatment, model structure
and data type play in influencing the optimization results
and the biological understanding of a system. The MIA
revealed that the saccharina diet with different levels of corn
increased weight gain due to increased degraded DM flow
from the rumen, which in turn was caused by increased
VFI and degradation of insolubles, although the weight gain
across all treatments was supported by the flow of solubilized
substrate from the rumen. Moreover, the weight gain was
not a consequence of the change in the efficiency of general
postruminal transformation. Furthermore, the system behav-
ior was minimally influenced by animal age. In addition, the
results revealed that PL, correlation matrix and FIM can be of
great utility for understanding the parameter space within
the inverse problem approach. It is necessary to incorporate
additional data to achieve a clearer understanding of the bio-
logical system and this deterministic inverse approach.
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