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Resumen: E/ calculo del volumen de un sdlido puede aproximarse
de manera discreta rellenandolo con primitivas geométricas requ-
lares y convexas. Simular el llenado de volumenes con esferas
en un entorno grafico tridimensional requiere del movimiento e
interaccion entre las primitivas geométricas involucradas, en par-
ticular la deteccion y repulsion de las colisiones entre las esferas.
El objeto a rellenar se representa con una malla de poligonos y el
problema aparece cuando hay muchas esferas moviéndose, las
operaciones incrementan y la simulacién se vuelve inestable. En
este trabajo proponemos un algoritmo para llenar objetos sdlidos
con esferas, mediante el descarte de primitivas geométricas (es-
feras, poligonos) para aligerar el proceso. Se muestra formalmente
el beneficio de descartar primitivas geométricas sin afectar el
proceso de llenado de volumen y se realizan experimentos para
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determinar el beneficio temporal al usar el algoritmo sugerido en
objetos convexos y ho-convexos.

Palabras clave: deteccién de colisiones, animacion de esferas,
simulacion de particulas.

Abstract: Volume computation can be approximated by filling with
regular convex geometric primitives. Volume filling simulation using
spheres in a 3D environment, requires the motion and interaction
between the geometric primitives, specifically collision detection
and collision response. The object to be filled is represented by
a polygonal mesh, and the problem arises when there are many
spheres moving around, operations increase, and the simulation
becomes unstable. We propose an algorithm to fill solid objects
with spheres, by discarding geometric primitives (spheres and
polygons) to speed up the simulation. We emphasize in the benefit
ofthe method, which is shown mathematically and computationally
with experiments of convex and non-convex objects.

Keywords: collision detection, spheres animation, particle
simulation.

Resumo: O célculo do volume de um sdlido pode ser aproxi-
mado discretamente preenchendo o dito volume com primitivas
geométricas regulares e convexas. Simular o preenchimento de
volumes com esferas em um ambiente grafico tridimensional re-
quer o movimento e a interagao entre as primitivas geométricas
envolvidas, em particular a detecgéo e a repulsao das colisbes
entre as esferas. O objeto é representado com uma malha de
poligonos e o problema aparece quando ha muitas esferas em
movimento, as operagbes aumentam e a simulagdo se torna ins-
tavel. Neste artigo propomos um algoritmo para preencher objetos
solidos com esferas, descartando primitivos geométricos (esferas,
poligonos) para clarear o processo. O beneficio de descartar
primitivas geométricas sem afetar o processo de enchimento de
volume é formalmente mostrado e experimentos sdo realizados
para determinar o beneficio temporal usando o algoritmo sugerido
em objetos convexos e ndo convexos.

Palavras-chave: Deteccdo de colisdo, animagdo de esferas,
simulagéo de particulas
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Introduction

Volume calculation is fundamental in several applications such as
engineering, fluids, and optimization problems. An approximation to
the volume can be calculated by filling the volume with spheres. The
problem can be enunciated as follows: given a volumetric object and
appropriate boundary conditions, compute the corresponding set of
spheres that fills the object.

The volume filling can be seen as a packing process, where the most
computationally costly part is usually the collision detection (HERRE-
RA ZAPATA, 2014). The speed depends critically on how the objects
are represented and manipulated. The volume of an object can be
approximated as , where n is the number of spheres of radii r that
fill the object; spheres are joined and non-overlapped. The method
proposed consists on the immobilization of spheres when their motion
has stopped, so that spheres have finished moving and they have
occupied a permanent location in the object. This immobilization
is called the frozen process and indicates that spheres cannot be
moved anymore.

The contributions of this work are as follows: An algorithm of the frozen
method to discard spheres in the running process is proposed, the
mathematical framework is formulated, the analysis of the time and
spatial complexity of the sequential version is done, and experiments
are conducted to determine the speed up of the simulation.

A class of computer methods exists to generate packing structures by
exploring the geometrical constraints. These methods are commonly
referred to as packing algorithms. They are designed specifically to
generate the structure, rather than simulate the process, of particle
packing.

Some projects in the thematic of packing algorithms are as follow:

*  Weller & Zachmann (2010) proposed a novel method for filling ar-
bitrary objects very quickly and stably with sets of non-overlapping
spheres, such algorithm was able to efficiently compute a space
filling sphere packing for arbitrary objects.

» Shimada & Gossard (1995) developed a circle-packing method ca-
lled bubble mesh to generate triangular meshes for two and three
dimensions. Their packing scheme is based on the simulation of the
particles that interact with each other under repulsive and attractive
forces.

* Voronoi approaches to bound a 3D object with spheres are found
in (SHIER, 2013) and (BORKOVEC, 1994).

33



INFORMATICA N° 40 - enero - junio / 2019

VYENTRIA

»  Ageometric packing generation algorithm was presented in (JERIER,
2009), it is based on a tetrahedral mesh to make an isotropic and
dense packing of polydisperse spheres in a short computation time.

+ (MADERAZetal., 2015) and (MADERA et al., 2013) propose algorithms
to fill tubular and non-tubular objects respectively using spheres.

There are some physical simulation models, such as distinct element
method (DEM) or molecular dynamics methods, which can take the real
interaction forces into account and simulate the dynamic process of par-
ticle packing and generate, as a result, the packing structure (JIA, 2001).
(PIANET, 2011) compare different ways of using the DEM for consolida-
ting and compressing particle packings in the context of paper-coating
applications. (MULLER, 2011) connected particles to form a simulation
mesh. These particles are represented by anisotropic shapes such as
ellipses which are replaced by a sphere tangent. In the field of medicine,
the filling of vessels is performed for simulation by inflating balls to treat
stenosis, a partial or total blockage of an artery (LUBOZ, 2014). Filling
with different 3D shapes can be found in (SHIER, 2013), where Shier
and Bourke fill any spatial region with a random fractalization.

Unlike the aforementioned techniques, our method reduces the number
of the collision detections and collision responses among spheres and
polygons by discarding primitives as the object is being filled. The paper
is organized as follows. The method proposed is described in Section
2. Section 3 discusses the sequential implementation. Section 4 gives
details of the experiments with the four objects utilized. Finally, conclu-
sion and further work are presented in Section 5.

1. Theoretical foundation

A graphic simulation of the filling volume with spheres is performed.
The animation process involves motion, collision detection and collision
response. A sphere is represented by center and radius, and contains
velocity and position (SCHENEIDER et al., 2003). Spheres are moved
by using the Euler numerical method, where the solver calculates the
new position and updates the velocity. This new velocity causes the
sphere to continue traveling downwards and collides with the polygons
of the mesh. The collision response calculates the corrected position
and direction of the sphere for the next movement. The fact that spheres
are rotationally invariant is most useful.

Having an object mesh of m polygons and assuming it is filling with n
spheres, we can enunciate equation (1) which considers the interaction
between spheres and polygons.
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g(n,m) = SS(n) + SP(n,m) (1)

SS(n) gives the number of operations of the sphere-sphere interaction,
and SP(n,m) returns the number of operations of the sphere-polygon
interaction. During the simulation, spheres come down, and collide with
the polygons of the mesh, keeping together.

The first term of equation (1), SS(n), can be extended to two fac-
tors to indicate the collision detection and the collision response
processes (equation 2). The second term of equation (1) equals
SP(n,m) = O(nm).

SS(n) = O(n?) + O(n?) (2)
1.1 Frozen Spheres
A group of spheres x is formed by g spheres, then ¢ = {01, @2,..., ©
b 8=1{0,, ©,,...,0,} leading B =nly the number of groups (CHi
PEREZ, 2016). The object is a volume formed by a polygon mesh {

A, A2, ..., Am} (SANCHEZ UICAB, 2017). The simulation allows
appearing spheres by groups, so that ¢, starts moving, and when
spheres are allocated in the mesh object, the next group appears and
starts moving around. The Brute Force approach requires £ collision
detections as shown in Figure 1B. The number of collision responses
equals the double of the number of collision detections since there is
a pair of spheres involved.

A sphere @ is defined by their coordinates ©.x, ®.y, ®.z, and it can
be converted into a frozen sphere 0. During the process, running
spheres © are tested against the other spheres. The Frozen approach
consists on applying the immobilization to spheres that have been
allocated in the object mesh. Frozen spheres are placed on the bot-
tom part of the polygonal mesh, due to the gravity, and they have no
motion. Frozen spheres are also considered for collision detection
tests; however, they are not considered for collision response due
to their immobility (Figure 1A).

The first term of equation (2) relates to the number of collision tests. The number of
tests required for self-collisions of a group equals ? and it is represented by

triangles of the main diagonal (Figure 1B). The number of collision tests for
spheres, of different groups, is represented by the squares placed above the main
diagonal and gives y2 each, & vs &. From here, spheres of group 1 must test
collisions with spheres of groups 2, ..., B, giving (p-1) y2 tests. This way, (B-1) 2 +
?tests are needed for group 1, (B-1) 12 +§ tests for group 2, and so on. Accordingly,

for  groups, B§+ v Pk = ﬁzgtests are required.
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If a collision of a pair of spheres occurs, then both spheres must move, in opposite
directions, for response. As a result, twice the number of operations is obtained for
collision detection: 2[32%. Therefore, SS(n) = SS(By) = [52”2—2+ pzyz = 2([5«/)2. As the Frozen
method immobilizes some spheres, a benefit in the processing is achieved; thus,
lemma 1 is stated to show the reduction in the number of operations by applying
the frozen method in spheres groups.

A The filling process (a) blue
spheres are coming down, red
spheres collide with polygons,
" | (b)white spheres are frozen, (c)
. | the process continues after the
previous group has been frozen

B Sphere-Sphere interaction
using groups, the brute force
approach

ip o CiocmeD

C (a) Frozen spheres in white,
(b) discarded spheres in yellow,
(c) running spheres in blue

Figure 1. (A) The volume filled with spheres, (B) the interaction
between spheres, (C) the frozen spheres are discarded.

- Lemma 1. The number of operations of sS(n) = SS(py) with B groups of v spheres
each is reduced from 2(fy)2to 2B - 272

Frozen spheres can be discarded, from O to®, which means that they are not
considered for collision detection either for a response, they are practically
removed from the simulation. Frozen spheres can be discarded when they are
located below the running spheres and they are not colliding with them (Figure 1C).

The heights of the running and frozen spheres are compared as follows: ©.y -O.y
>¢. The problem with this constraint is that running spheres are often moving. The
heights of frozen spheres are compared instead, the last frozen sphere group
against the other frozen spheres:

Ojy-Oiy >e, V-Oiy €&i, Ojy € Prre (3)

Where f is the last frozen group (LFG). This way the number of operations is
reduced as stated in lemma 1 to 2(p- % a)y?, where o is the number of sphere
groups discarded.
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1.2 Discarded Polygons

At the start, the first group of spheres is running and mg comparisons
with polygons are performed (Figure 2A). A polygon A can be discar-
ded when one or more spheres are placed on the polygons, that is, the
polygon is covered with spheres in such a way that the following sphere
groups will never collide with that polygon, but with covered spheres
(Figure 2B).

The number of discarded polygons varies depending on the sphere
motion, so that when running ¢,, then m1 polygons could be discarded;
when running g,, then m2 polygons could be discarded, and so on. The
number of operations of SP(n,m) with y spheres per groups is reduced
from nm = By to By (m-m1-...-mf), where mi is the number of discarded
polygons in group i.

1.3 Set of Groups

A real simulation demands the motion of several sphere groups at the
same time. This analysis is extended to run several groups. Let k be
the number of groups to run at the same time, which we call a set of
groups. The first k groups run, then, these groups are frozen and the
next k groups start running. Assuming k=3 (Figure 2C), R, (in green)
involves the spheres of the third set in interaction and R, (in blue) con-
tains spheres of the third set against spheres of sets 1, 2.

sommo s omme o omms Rl s oo Pl s o smms | (o0 mme o vmmeoomns B oamme B smme
[

A Sphere-polygon interaction.
The brute force approach (left)
and the discarded approach
(right)

D U0 E TR To

=

Uncovered
polygon

C Sphere-sphere interaction using sets,
sequential version. Frozen spheres (left) and
frozen spheres with the discarded approach
(right)

Figure 2. (A) sphere-polygon interaction, (B) a covered
polygon, (C) sphere-sphere interaction.
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In R4, a collision response is performed in each sphere of the pair collided, so that it
is the double of the number of colliding pairs. However, in Rz only the half of the
number of spheres are considered, due to spheres of sets 1, 2 are frozen. R
involves the interaction between spheres of set 3 and spheres of sets 1, 2,
requiring (ky)2+(ky)? collision tests. Ry involves the interaction between spheres of

set 3, requiring % collision tests. The number of collision responses needed is
(ky)z+(ky)? + zgas ilustrated in Figure 1B left. Thus, lemma 2 is enunciated.

- Lemma 2. The number of operations of S5(n)=SS(B, v, k) with g groups of vy spheres
each with a set of k groups equals (8-k) (ky)%@ +(B-k) (ky)2+2 @ .

Evidently discarding spheres reduces the number of spheres to deal with. As a
result, lemma 2 is transformed in (B-k-Xai’) (k«/)%@ +(B-k-Zai’) (ky)2+2¥, where
oi indicates if the group i is discarded, 0<i<p. Hence, ai'=1 if the group i is
discarded, otherwise «i/=0. Alike discarding spheres, discarded polygons are
independent of the spheres sets. Polygons are also discarded, and lemma 3 is
enunciated.

- Lemma 3. The number of operations of SP(n,m) with y spheres per group each
and a set of k groups is kB(m-m1'+ m2'+... m%), where m1'= m1+ m2+...mk and m2'=
mk+1+ mk+2+... m2k, etc.

Therefore, less polygons are employed in every frozen activation and
the ideal case would be that this sum equals m when the object is filled.
Alike lemma 2, the a value is included to consider frozen and discarded
spheres to reduce the number of operations stated in lemma 3.

2. Methodology

2.1 The Sequential Algorithm

Using sphere groups, the number of operations of the frozen approach
is shown in equation (4) and applying the discarded process in spheres
and polygons, B=p-a1-a2-...-af and m=m-m -m.-...-mp are set.

SS(By) + SP(Bym) = 2(By)2+2(By)2m (4)

Using spheres sets, the number of operations required for the frozen method
without and with the primitives discarded is shown in equation (5) and applying the

discarding process in spheres and polygons, ﬁ=ﬁ-a'1-a'2-...-a’g m=m'-m'1-m'2-...-m’E are
set.

SS(By) + SP(By,m) = (9)
(BK) (k)23 (hey) 2+(B-K) (k) 2-+(kp) 2+ (ky)m
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Algorithm 1 shows the pseudocode of the sequential algorithm. There
are three loops to detect collisions. The first cycle refers to the SS inte-
raction of running spheres, the second cycle relates to the SS interac-
tion of running and frozen spheres, and the third cycle refers to the SP
interaction. The number of groups currently running are start, start+1,
..., end. The FFG (First Frozen Group) is the following group to the last
group discarded; if no discarded groups exist, then FFG=0. The LFG
(Last Frozen Group) is the last group frozen, and the following groups
are currently running.

There are two procedures to be included, the discarded spheres and the
discarded polygons. These procedures are not shown in algorithm 1,
since they are not called every time step such as the collision detection
and the collision response operations. To discard spheres, a compari-
son between the LFG group and the other frozen groups is required,
considering the constraint of equation (3). In the case of polygons, the
discarding process demands the verification of the covering spheres.
Colliding spheres can be considered as a covered sphere; however, the
polygon can be larger that several spheres are needed. A ray sphere
intersection test is performed for each of the vertices of the polygon.
A vertex has a normal vector that works as a ray; therefore, the three
vertex arrays must collide with a sphere to be considered as a discarded
polygon. The ray sphere intersection test considers the verification of
the closeness of the sphere and the polygon.

Table 1. The Collision Detection Algorithm.

Algorithm 1: Spheres Collision
For each (0i, ©j,) start < i,j < end

If Collision (Qi, ©j,) { response(Oi), response(Qj) }

For each (0i, OF,) start < i < end, FFS £ j < LFS
If Collision (@i, OF,) { response(Oi)}

For each (0Oi, Aj,) start £ i < end, 0 £ j £ NumGroupPolys
If Collision (Q@i, Aj,) { response(0i)}

3. Results and discussion

3.1 Description of results

Algorithms were implemented on a PC Intel Xeon two-CPU 2.49Hz with
a GeForce 590 GTX Graphics Card. Four objects were employed: Torus
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(1,1152 polygons), Sphere (960 polygons), Cube (768 polygons), Hu-
man (2,218 polygons). The time of the spheres and polygons interaction
during the running time is analyzed. Spheres are created in blocks; the
algorithm finds the best location of the spheres to fill the volume and
frozen polygons are counted.

The animation process can be implemented according to several parame-
ters such as velocity and collisions. To evaluate the algorithm performan-
ce, the number of frames per second is tested. Several sphere groups
appear inside the object, the time is recorded, and spheres are frozen.

The Torus and Sphere objects have a 10-sized group while the Cube
and Human have 3-sized group. The time was recorded in every set:
two groups for the Torus, Sphere, and Human and seven groups for
the Cube. The frozen process and the discarding process are activated
every two sets in the Torus, Sphere and Cube, and every three sets in
the Human.

The time considered is the sphere-polygon interaction due to the sphere-
sphere interaction is irrelevant (0-1 ms). It means that the comparison
between spheres does not affect the algorithm performance. The Torus
object is filled with 320 spheres. Two sets are leaving to come down
before the frozen process. The first set varies in the range of 13-25 ms
and the second set varies in the range of 26-50 ms. 51% of discarded
polygons are reported.

In the Sphere object, 23 ms and 35 ms are obtained for the first and
second set, respectively. The time is reduced due to the object provides
plenty of space to allocate spheres. Few numbers of discarded polygons
are obtained, 0.4%. In the third object, the Cube, the first set takes 17
ms and the second set takes 35 ms. 0.8% of discarded polygons are
achieved. In the Human object the time recorded was 13, 26, and 39
ms for the sets i, i+1, i+2, respectively. There was 0.6% of discarded
polygons.

Since the slower processing time a linked list to trace polygons is cons-
tructed rather than using a sequential loop. The linked list connects the
polygons sorted, considering the discarded polygons. If A — Aj A,
and A is discarded, then A = A,

To speed the implementation up, a Quad Tree is added in the mesh ob-
ject. The mesh is divided into four parts and a sphere is tested with the
quarter part of the polygons. This accelerates the algorithm as shown in
Figure 3. The Quad Tree speeds up the algorithm, but there is a limited
number of animating spheres per set: 40 spheres in the Torus, Sphere
and Cube, and 100 spheres in the Human. For real time simulations, a
large number of sets is required.
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Figure 3. Algorithm time in ms for the Torus, Sphere, Cube and Human objects.

3.2 Discussion of results

Convex objects are easier to fill and shows a time processing similar
during the whole simulation, from 20 ms to 35 ms. Non-convex objects
are more difficult to be filled but the time decreases as the simulation
evolves. Experiments show a better time when using the algorithm with
a Quad Tree, in particular convex objects (sphere and cube) have the
best improvement, about 10 ms per frame better than the sequential
version. The Quad Tree demonstrates benefits in non-convex objects,
but the enhancement is lesser, from 10 ms to 5 ms better. The reason
is that a non-convex object presents concavities, where spheres should
be accommodated, but takes longer and it its more difficult to obtain
their final position.

The frozen process guarantees the reduction in the number of spheres
and polygons considered; in such a way that the number of geometric
primitives is being lesser as the simulation runs.

3.3 Comparison with other approaches

Spheres (particles) has been used for physical simulations during seve-
ral years. The methods are being improved and new technology helps
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to run simulations in real time. The methods integrate the velocities
and positions of all particles for a small interval of time. In this section,
recent approaches are described, emphasizing in the similarities and
differences with our proposal method.

Kalms (KALMZ, 2019) employed 2D spheres in a parallel implementa-
tion, but he did not use an object volume, just spheres moving around.
His algorithm takes n log n time running on GPU using CUDA, and
particles are grouped in a hierarchy, similar to our approach where a
tree data structure is used to speed up the simulation.

Spheres have been used to model several types of physical phenomena.
Macklin et al. (MACKLIN, 2014) utilized particles to model gases, liquids,
deformable solids, rigid bodies. They employed position-based dynamic
method to deal with particles, which contain physical parameters such
as friction, stiff components, and others. Similar to ours, the collision
detection method computes the distance between the spheres, and they
address the positional drift by freezing particles in place if their velocity
has dropped below a user-defined threshold.

In (XU, 2019), the interaction forces between different particles and
between particle and boundaries are described by hard spring repul-
sion or a decaying repulsion potential that are introduced to prevent
collisions between particles. The number of 3D particles simulated are
few, about 100 or 200, but authors applied magnetic field intensity on
the time response of MRF (magnetorheological fluid).

The study of Fukuda and Fukuoka (FUKUDA, 2019) involved an exa-
mination of the effects of particle shapes and the coefficients of contact
forces used in the discrete element method on mixture flows. Different
flows were obtained for spherical and gravel particles (joined spheres)
under dense conditions, whereby the particle shear stress became much
greater than that for water. The repulsion process is similar to ours, by
using the normal vectors to cull away spheres.

Melero et al. (MELERO, 2019) introduced the EBP-Octree, a tight
hierarchy of convex bounding volumes, so it can be included in the
traditional approach for pairwise collision detection of rigid models. The
method quickly rejects non-intersecting objects. They do not offer just
basic first contact detection, but also intersection phase with the exact
list of collided triangles. They ran simulations with massive models, 28
millions of 3D spheres.

Yan et al. (YAN, 2019) applied the recently developed updated Lagran-
gian particle hydrodynamics (ULPH) method to model and simulate
weakly compressible multiphase flows using 2D spheres. Several phy-
sical equations were considered for fluids.

=



Universidad de Manizales Facultad de Ciencias e Ingenieria

As can be seen, the running simulations employed different hardware
such as GPUs. All approaches include physical properties, which achieve
a real simulation, but requires more processing. The main phenome to
simulate is the fluid and its variations. Some approaches simulate the
motion of few spheres; only one approach simulates millions of spheres.
One approach employs similar computation for collision detection and
other approach for collision response. In addition, one approach utilizes
a tree structure to cull away primitives, this save time in the running time,
but requires a preprocessing stage to prepare the Bounding Volume.

4. Conclusion

A method which employs spheres to fill object volumes is proposed. The
method provides the frozen process, which allows discarding spheres
and polygons to reduce the number of operations during the run time.
The difference with other approaches lies on the discard of primitives due
to the frozen process, which allows avoiding expensive computations.
The number of spheres increases when the volume is filling, but the
number of operations holds. The method can be adjusted to a specific
animation to simulate fluids, solids, smoke, etc. This method can be
speeded up with a type of structure such as the Quad Tree employed
in the experiments.

As further work, the algorithm is suitable to be parallelized by considering
the sphere groups as handling with a thread. In addition, the animation
can be extended to allow the motion of the volumetric object, making
spheres to be unfrozen.

Bibliographic references

BORKOVEC, M.; DE PARIS, W; PEIKERT, R. (1994). The fractal dimension of the apollonian
sphere packing. Fractals, vol. 02 No. 04, pp. 521-526. ISSN: 1793-6543.

CHI PEREZ, MARTIN LEONEL. (2016). Paralelizacion de deteccion de colisiones en humanos
virtuales. Tesis de grado (Maestria en Ciencias de la Computacion). Mérida, México. Univer-
sidad Auténoma de Yucatan, Facultad de Matematicas. Clasificacion Biblioteca en cadigo de
barras: T0004185 INGE

FUKUDA, Tomoo; FUKUOKA, Shoji (2019). Interface-resolved large eddy simulations of hyper
concentrated flows using spheres and gravel particles. In Advances in Water Resources,
Volume 129, Pages 297-310, ISSN 0309-1708.

HERRERA ZAPATA, CARLOS GASPAR. (2014). Algoritmos en Paralelo para preparacién de ob-
jetos para deteccion de colisiones. Tesis de grado (Maestria en Ciencias de la Computacion).
Mérida, México. Universidad Autonoma de Yucatan, Facultad de Matematicas. Clasificacion
local en cadigo de barras: T0004051 INGE

JERIER, Jean-Franois; IMBAULT, Didier; DONZE, Frederic-Victor, DOREMUS, Pierre (2009). A
geometric algorithm base on tetrahedral meshes to generate a dense polydisperse sphere
packing. Granular Matter, vol. 11, No. 1, pp. 43-52. ISSN: 1434-7636.

43



INFORMATICA N° 40 - enero - junio / 2019

VYENTRIA

JIA, Xiaodong. & WILLIAMS, Richard A. (2001). A packing algorithm for particles of arbitrary shapes
Powder Technology, Vol. 120, No. 3 (oct), pp. 175 - 186. ISSN: 0032-5910.

KALMS, Mikael (2015). “High-performance particle simulation using CUDA”. Master Thesis, De-
partment of Electrical Engineering, Linkoping University. June 3, 2015.

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A816727&dswid=8419

LUBOZ, Vincent; KYAW-TUN, Jim; SEN, Sayan; KNEEBONE, Roger; DICKINSON, Robert; KITNEY;
Richard; BELLO, Fernando (2014). Real-time stent ad ballon simulation for stenosis treatment.
In Visual Computing, vol. 30, No. 3, pp. 341-349. ISSN: 0178-2789.

MACKLIN, Miles; MULLER Matthias; CHENTANEZ, Nuttapong; KIM, Tae-Yong (2014). Unified
particle physics for real-time applications. ACM Trans. Graph. 33, 4, Article 153 (July 2014),
12 pages 153:1-12, DOI: https://doi.org/10.1145/2601097.2601152

MADERA, Francisco A.; AYALA, Enrique; MOO-MENA, Francisco (2015). In Proceedings of the
10th International conference on Computer Graphics and Applications (VISIGRAP 2015), pp.
325-331. http://www.visapp.visigrapp.org/?y=2015

MADERA, Francisco A.; LAYCOCK, Stephen D.; HERRERA, Carlos (2013). In Proceedings of the
IASTED International conference on Computer Graphics and Imaging (CGIM 2013), pp. 70-76.

MELERO, Francisco Javier; AGUILERA, Angel; FEITO, Francisco Ramén (2019). Fast collision
detection between high-resolution polygonal models. In Computers & Graphics, Volume 83,
Pages 97-106, ISSN 0097-8493.

http://www.actapress.com/Paperinfo.aspx?paperld=454993

MULLER, Matthias; CHENTANEZ, Nuttapong (2011). Adding physics to animated characters with
oriented particles. In Virtual reality Interactions and Physical Simulations (VRI-Phys), pp. 83-91.

PIANET, G.; BERTRAND, F.; VIDAL, D.; MALLET, B. (2011). Discrete element method-based
models for the consolidation of particle packings in paper-coating applications. Asia-Pacific
Journal of Chemical Engineering. Vol. 6, No. 1, pp. 44-54. ISSN: 1932-2143.

SANCHEZ UICAB, GONZALO AUGUSTO. (2017). Preservacion de volumen en cuerpos articula-
dos. Tesis de grado (Maestria en Ciencias de la Computacion). Mérida, México. Universidad
Auténoma de Yucatan, Facultad de Matematicas. Clasificacion local en cédigo de barras:
T0004409 INGE

SHIER, John & BOURKE, Paul (2013). An algorithm for random fractal filling of space [online]. In:
Computer Graphics Forum, Vol .32 No. 8, p. 89-97. ISSN : 1467-8659.

SHIMADA, Kenji & GOSSARD, David C. (1995). Bubble mesh: Automated triangular meshing
of non-manifold geometry by sphere packing. Third ACM Symposium on Solid Modeling and
Applications, SMA'95 (17-19/05/1995). Salt Lake City (UT, USA): ACM. HOFFMAN, Chris &
ROSSIGNAC, Jarek (eds.). Proceedings of the SMA'95. New York (NY, USA): Association for
Computing Machinery, ACM. p. 409-419. ISBN: 0-89791-672-7.

SCHNEIDER, PHILIP; EBERLY, DAVID H. (2003). Geometric Tools for Computer Graphics. San
Francisco, USA. ISBN: 1-22860-594-0. The Morgan Kaufmann series in Computer Graphics
and Geometric Modeling.

WELLER, Rene & ZACHMANN, Gabriel (2010). ProtoSphere: a GPU-assisted prototype guided
sphere packing algorithm for arbitrary objects. ACM SIGGraph Asia 2010 Sketches, SA10
(15-18/12/2010). Seoul (Republic of Korea): ACM. CANI, Marie-Paule & SHEFFER, Alla
(eds.).Proceedings of the SA'10. New York (NY, USA): Association for Computing Machinery,
ACM. p. 8:1-8:2. ISBN: 978-1-4503-0523-5.

XU, Jinhuan; LI, Jianyong; ZHU, Pengzhe; LI, Baozhen; ZHAO, Chaoyue (2019). Coarse-grained
molecular dynamics simulations of particle behaviors in magnetorheological polishing fluid. In
Computational Materials Science, Volume 163, Pages 68-81, ISSN 0927-0256.

YAN, Jiale; LI, Shaofan; ZHANG, A-Man; KAN, Xingyu; SUN, Peng-Nan (2019). Updated Lagran-
gian Particle Hydrodynamics (ULPH) modeling and simulation of multiphase flows. Journal of
Computational Physics, Volume 393, Pages 406-437, ISSN 0021-9991.

My



