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Resumen: El cálculo del volumen de un sólido puede aproximarse 
de manera discreta rellenándolo con primitivas geométricas regu-
lares y convexas. Simular el llenado de volúmenes con esferas 
en un entorno gráfico tridimensional requiere del movimiento e 
interacción entre las primitivas geométricas involucradas, en par-
ticular la detección y repulsión de las colisiones entre las esferas. 
El objeto a rellenar se representa con una malla de polígonos y el 
problema aparece cuando hay muchas esferas moviéndose, las 
operaciones incrementan y la simulación se vuelve inestable. En 
este trabajo proponemos un algoritmo para llenar objetos sólidos 
con esferas, mediante el descarte de primitivas geométricas (es-
feras, polígonos) para aligerar el proceso. Se muestra formalmente 
el beneficio de descartar primitivas geométricas sin afectar el 
proceso de llenado de volumen y se realizan experimentos para 
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determinar el beneficio temporal al usar el algoritmo sugerido en 
objetos convexos y no-convexos.

Palabras clave: detección de colisiones, animación de esferas, 
simulación de partículas.

Abstract: Volume computation can be approximated by filling with 
regular convex geometric primitives. Volume filling simulation using 
spheres in a 3D environment, requires the motion and interaction 
between the geometric primitives, specifically collision detection 
and collision response. The object to be filled is represented by 
a polygonal mesh, and the problem arises when there are many 
spheres moving around, operations increase, and the simulation 
becomes unstable. We propose an algorithm to fill solid objects 
with spheres, by discarding geometric primitives (spheres and 
polygons) to speed up the simulation. We emphasize in the benefit 
of the method, which is shown mathematically and computationally 
with experiments of convex and non-convex objects.

Keywords: collision detection, spheres animation, particle 
simulation.

Resumo: O cálculo do volume de um sólido pode ser aproxi-
mado discretamente preenchendo o dito volume com primitivas 
geométricas regulares e convexas. Simular o preenchimento de 
volumes com esferas em um ambiente gráfico tridimensional re-
quer o movimento e a interação entre as primitivas geométricas 
envolvidas, em particular a detecção e a repulsão das colisões 
entre as esferas. O objeto é representado com uma malha de 
polígonos e o problema aparece quando há muitas esferas em 
movimento, as operações aumentam e a simulação se torna ins-
tável. Neste artigo propomos um algoritmo para preencher objetos 
sólidos com esferas, descartando primitivos geométricos (esferas, 
polígonos) para clarear o processo. O benefício de descartar 
primitivas geométricas sem afetar o processo de enchimento de 
volume é formalmente mostrado e experimentos são realizados 
para determinar o benefício temporal usando o algoritmo sugerido 
em objetos convexos e não convexos.

Palavras-chave: Detecção de colisão, animação de esferas, 
simulação de partículas
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Introduction
Volume calculation is fundamental in several applications such as 
engineering, fluids, and optimization problems. An approximation to 
the volume can be calculated by filling the volume with spheres. The 
problem can be enunciated as follows: given a volumetric object and 
appropriate boundary conditions, compute the corresponding set of 
spheres that fills the object.
The volume filling can be seen as a packing process, where the most 
computationally costly part is usually the collision detection (HERRE-
RA ZAPATA, 2014). The speed depends critically on how the objects 
are represented and manipulated. The volume of an object can be 
approximated as , where n is the number of spheres of radii r that 
fill the object; spheres are joined and non-overlapped. The method 
proposed consists on the immobilization of spheres when their motion 
has stopped, so that spheres have finished moving and they have 
occupied a permanent location in the object. This immobilization 
is called the frozen process and indicates that spheres cannot be 
moved anymore.
The contributions of this work are as follows: An algorithm of the frozen 
method to discard spheres in the running process is proposed, the 
mathematical framework is formulated, the analysis of the time and 
spatial complexity of the sequential version is done, and experiments 
are conducted to determine the speed up of the simulation.
A class of computer methods exists to generate packing structures by 
exploring the geometrical constraints. These methods are commonly 
referred to as packing algorithms. They are designed specifically to 
generate the structure, rather than simulate the process, of particle 
packing.
Some projects in the thematic of packing algorithms are as follow:
• Weller & Zachmann (2010) proposed a novel method for filling ar-

bitrary objects very quickly and stably with sets of non-overlapping 
spheres, such algorithm was able to efficiently compute a space 
filling sphere packing for arbitrary objects.

• Shimada & Gossard (1995) developed a circle-packing method ca-
lled bubble mesh to generate triangular meshes for two and three 
dimensions. Their packing scheme is based on the simulation of the 
particles that interact with each other under repulsive and attractive 
forces.

• Voronoi approaches to bound a 3D object with spheres are found 
in (SHIER, 2013) and  (BORKOVEC, 1994).
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• A geometric packing generation algorithm was presented in (JERIER, 
2009), it is based on a tetrahedral mesh to make an isotropic and 
dense packing of polydisperse spheres in a short computation time.

• (MADERA et al., 2015) and (MADERA et al., 2013) propose algorithms 
to fill tubular and non-tubular objects respectively using spheres.

There are some physical simulation models, such as distinct element 
method (DEM) or molecular dynamics methods, which can take the real 
interaction forces into account and simulate the dynamic process of par-
ticle packing and generate, as a result, the packing structure (JIA, 2001). 
(PIANET, 2011) compare different ways of using the DEM for consolida-
ting and compressing particle packings in the context of paper-coating 
applications. (MÜLLER, 2011) connected particles to form a simulation 
mesh. These particles are represented by anisotropic shapes such as 
ellipses which are replaced by a sphere tangent. In the field of medicine, 
the filling of vessels is performed for simulation by inflating balls to treat 
stenosis, a partial or total blockage of an artery (LUBOZ, 2014). Filling 
with different 3D shapes can be found in (SHIER, 2013), where Shier 
and Bourke fill any spatial region with a random fractalization.
Unlike the aforementioned techniques, our method reduces the number 
of the collision detections and collision responses among spheres and 
polygons by discarding primitives as the object is being filled. The paper 
is organized as follows. The method proposed is described in Section 
2. Section 3 discusses the sequential implementation. Section 4 gives 
details of the experiments with the four objects utilized. Finally, conclu-
sion and further work are presented in Section 5.

1. Theoretical foundation
A graphic simulation of the filling volume with spheres is performed. 
The animation process involves motion, collision detection and collision 
response. A sphere is represented by center and radius, and contains 
velocity and position (SCHENEIDER et al., 2003). Spheres are moved 
by using the Euler numerical method, where the solver calculates the 
new position and updates the velocity. This new velocity causes the 
sphere to continue traveling downwards and collides with the polygons 
of the mesh. The collision response calculates the corrected position 
and direction of the sphere for the next movement. The fact that spheres 
are rotationally invariant is most useful.
Having an object mesh of m polygons and assuming it is filling with n 
spheres, we can enunciate equation (1) which considers the interaction 
between spheres and polygons.
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g(n,m) = SS(n) + SP(n,m)                   (1)

SS(n) gives the number of operations of the sphere-sphere interaction, 
and SP(n,m) returns the number of operations of the sphere-polygon 
interaction. During the simulation, spheres come down, and collide with 
the polygons of the mesh, keeping together.
The first term of equation (1), SS(n), can be extended to two fac-
tors to indicate the collision detection and the collision response 
processes (equation 2). The second term of equation (1) equals 
SP(n,m) = O(nm).

SS(n) = O(n2) + O(n2)                       (2)

1.1 Frozen Spheres
A group of spheres x is formed by g spheres, then ξ1= { 1, 2,…, 

γ}, ξ2= { γ+1, γ+2,…, 2γ}, leading  b = n/γ  the number of groups (CHÍ 
PÉREZ, 2016). The object is a volume formed by a polygon mesh {

1, 2, …, m} (SÁNCHEZ UICAB, 2017). The simulation allows 
appearing spheres by groups, so that ξ1 starts moving, and when 
spheres are allocated in the mesh object, the next group appears and 
starts moving around. The Brute Force approach requires  collision 
detections as shown in Figure 1B. The number of collision responses 
equals the double of the number of collision detections since there is 
a pair of spheres involved.
A sphere  is defined by their coordinates .x, .y, .z, and it can 
be converted into a frozen sphere . During the process, running 
spheres  are tested against the other spheres. The Frozen approach 
consists on applying the immobilization to spheres that have been 
allocated in the object mesh. Frozen spheres are placed on the bot-
tom part of the polygonal mesh, due to the gravity, and they have no 
motion. Frozen spheres are also considered for collision detection 
tests; however, they are not considered for collision response due 
to their immobility (Figure 1A).
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Figure 1. (A) The volume filled with spheres, (B) the interaction 
between spheres, (C) the frozen spheres are discarded.
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1.2 Discarded Polygons
At the start, the first group of spheres is running and mg comparisons 
with polygons are performed (Figure 2A). A polygon  can be discar-
ded when one or more spheres are placed on the polygons, that is, the 
polygon is covered with spheres in such a way that the following sphere 
groups will never collide with that polygon, but with covered spheres 
(Figure 2B).
The number of discarded polygons varies depending on the sphere 
motion, so that when running ξ1, then m1 polygons could be discarded; 
when running ξ2, then m2 polygons could be discarded, and so on. The 
number of operations of SP(n,m) with γ spheres per groups is reduced 
from nm = bγ to bγ (m-m1-…-mb), where mi is the number of discarded 
polygons in group i.

1.3 Set of Groups
A real simulation demands the motion of several sphere groups at the 
same time. This analysis is extended to run several groups. Let k be 
the number of groups to run at the same time, which we call a set of 
groups. The first k groups run, then, these groups are frozen and the 
next k groups start running. Assuming k=3 (Figure 2C), R1 (in green) 
involves the spheres of the third set in interaction and R2 (in blue) con-
tains spheres of the third set against spheres of sets 1, 2.

Figure 2. (A) sphere-polygon interaction, (B) a covered 
polygon, (C) sphere-sphere interaction.
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Therefore, less polygons are employed in every frozen activation and 
the ideal case would be that this sum equals m when the object is filled. 
Alike lemma 2, the a value is included to consider frozen and discarded 
spheres to reduce the number of operations stated in lemma 3.

2. Methodology
2.1 The Sequential Algorithm
Using sphere groups, the number of operations of the frozen approach 
is shown in equation (4) and applying the discarded process in spheres 
and polygons, b=b-α1-α2-…-αb and m=m-m1-m2-…-mb are set.
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Algorithm 1 shows the pseudocode of the sequential algorithm. There 
are three loops to detect collisions. The first cycle refers to the SS inte-
raction of running spheres, the second cycle relates to the SS interac-
tion of running and frozen spheres, and the third cycle refers to the SP 
interaction. The number of groups currently running are start, start+1, 
…, end. The FFG (First Frozen Group) is the following group to the last 
group discarded; if no discarded groups exist, then FFG=0. The LFG 
(Last Frozen Group) is the last group frozen, and the following groups 
are currently running.
There are two procedures to be included, the discarded spheres and the 
discarded polygons. These procedures are not shown in algorithm 1, 
since they are not called every time step such as the collision detection 
and the collision response operations. To discard spheres, a compari-
son between the LFG group and the other frozen groups is required, 
considering the constraint of equation (3). In the case of polygons, the 
discarding process demands the verification of the covering spheres. 
Colliding spheres can be considered as a covered sphere; however, the 
polygon can be larger that several spheres are needed. A ray sphere 
intersection test is performed for each of the vertices of the polygon. 
A vertex has a normal vector that works as a ray; therefore, the three 
vertex arrays must collide with a sphere to be considered as a discarded 
polygon. The ray sphere intersection test considers the verification of 
the closeness of the sphere and the polygon.

Table 1. The Collision Detection Algorithm.

Algorithm 1: Spheres Collision 
For each (i, j,) start ≤ i,j ≤ end

     If Collision (i, j,) { response(i), response(j) }

For each (i, j,) start ≤ i ≤ end, FFS ≤ j ≤ LFS

     If Collision (i, j,) { response(i)}

For each (i, j,) start ≤ i ≤ end, 0 ≤ j ≤ NumGroupPolys

     If Collision (i, j,) { response(i)}

3. Results and discussion
3.1 Description of results
Algorithms were implemented on a PC Intel Xeon two-CPU 2.49Hz with 
a GeForce 590 GTX Graphics Card. Four objects were employed: Torus 
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(1,1152 polygons), Sphere (960 polygons), Cube (768 polygons), Hu-
man (2,218 polygons). The time of the spheres and polygons interaction 
during the running time is analyzed. Spheres are created in blocks; the 
algorithm finds the best location of the spheres to fill the volume and 
frozen polygons are counted.
The animation process can be implemented according to several parame-
ters such as velocity and collisions. To evaluate the algorithm performan-
ce, the number of frames per second is tested. Several sphere groups 
appear inside the object, the time is recorded, and spheres are frozen.
The Torus and Sphere objects have a 10-sized group while the Cube 
and Human have 3-sized group. The time was recorded in every set: 
two groups for the Torus, Sphere, and Human and seven groups for 
the Cube. The frozen process and the discarding process are activated 
every two sets in the Torus, Sphere and Cube, and every three sets in 
the Human.
The time considered is the sphere-polygon interaction due to the sphere-
sphere interaction is irrelevant (0-1 ms). It means that the comparison 
between spheres does not affect the algorithm performance. The Torus 
object is filled with 320 spheres. Two sets are leaving to come down 
before the frozen process. The first set varies in the range of 13-25 ms 
and the second set varies in the range of 26-50 ms. 51% of discarded 
polygons are reported.
In the Sphere object, 23 ms and 35 ms are obtained for the first and 
second set, respectively. The time is reduced due to the object provides 
plenty of space to allocate spheres. Few numbers of discarded polygons 
are obtained, 0.4%. In the third object, the Cube, the first set takes 17 
ms and the second set takes 35 ms. 0.8% of discarded polygons are 
achieved. In the Human object the time recorded was 13, 26, and 39 
ms for the sets i, i+1, i+2, respectively. There was 0.6% of discarded 
polygons.
Since the slower processing time a linked list to trace polygons is cons-
tructed rather than using a sequential loop. The linked list connects the 
polygons sorted, considering the discarded polygons. If i  j  k , 
and j is discarded, then i  k.
To speed the implementation up, a Quad Tree is added in the mesh ob-
ject. The mesh is divided into four parts and a sphere is tested with the 
quarter part of the polygons. This accelerates the algorithm as shown in 
Figure 3. The Quad Tree speeds up the algorithm, but there is a limited 
number of animating spheres per set: 40 spheres in the Torus, Sphere 
and Cube, and 100 spheres in the Human. For real time simulations, a 
large number of sets is required.
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Figure 3. Algorithm time in ms for the Torus, Sphere, Cube and Human objects.

3.2 Discussion of results
Convex objects are easier to fill and shows a time processing similar 
during the whole simulation, from 20 ms to 35 ms. Non-convex objects 
are more difficult to be filled but the time decreases as the simulation 
evolves. Experiments show a better time when using the algorithm with 
a Quad Tree, in particular convex objects (sphere and cube) have the 
best improvement, about 10 ms per frame better than the sequential 
version. The Quad Tree demonstrates benefits in non-convex objects, 
but the enhancement is lesser, from 10 ms to 5 ms better. The reason 
is that a non-convex object presents concavities, where spheres should 
be accommodated, but takes longer and it its more difficult to obtain 
their final position.
The frozen process guarantees the reduction in the number of spheres 
and polygons considered; in such a way that the number of geometric 
primitives is being lesser as the simulation runs.

3.3 Comparison with other approaches
Spheres (particles) has been used for physical simulations during seve-
ral years. The methods are being improved and new technology helps 
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to run simulations in real time. The methods integrate the velocities 
and positions of all particles for a small interval of time. In this section, 
recent approaches are described, emphasizing in the similarities and 
differences with our proposal method.
Kalms (KALMZ, 2019) employed 2D spheres in a parallel implementa-
tion, but he did not use an object volume, just spheres moving around. 
His algorithm takes n log n time running on GPU using CUDA, and 
particles are grouped in a hierarchy, similar to our approach where a 
tree data structure is used to speed up the simulation.
Spheres have been used to model several types of physical phenomena. 
Macklin et al. (MACKLIN, 2014) utilized particles to model gases, liquids, 
deformable solids, rigid bodies. They employed position-based dynamic 
method to deal with particles, which contain physical parameters such 
as friction, stiff components, and others. Similar to ours, the collision 
detection method computes the distance between the spheres, and they 
address the positional drift by freezing particles in place if their velocity 
has dropped below a user-defined threshold.
In (XU, 2019), the interaction forces between different particles and 
between particle and boundaries are described by hard spring repul-
sion or a decaying repulsion potential that are introduced to prevent 
collisions between particles. The number of 3D particles simulated are 
few, about 100 or 200, but authors applied magnetic field intensity on 
the time response of MRF (magnetorheological fluid).
The study of Fukuda and Fukuoka (FUKUDA, 2019) involved an exa-
mination of the effects of particle shapes and the coefficients of contact 
forces used in the discrete element method on mixture flows. Different 
flows were obtained for spherical and gravel particles (joined spheres) 
under dense conditions, whereby the particle shear stress became much 
greater than that for water. The repulsion process is similar to ours, by 
using the normal vectors to cull away spheres.
Melero et al. (MELERO, 2019) introduced the EBP-Octree, a tight 
hierarchy of convex bounding volumes, so it can be included in the 
traditional approach for pairwise collision detection of rigid models. The 
method quickly rejects non-intersecting objects. They do not offer just 
basic first contact detection, but also intersection phase with the exact 
list of collided triangles. They ran simulations with massive models, 28 
millions of 3D spheres.
Yan et al. (YAN, 2019) applied the recently developed updated Lagran-
gian particle hydrodynamics (ULPH) method to model and simulate 
weakly compressible multiphase flows using 2D spheres. Several phy-
sical equations were considered for fluids.
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As can be seen, the running simulations employed different hardware 
such as GPUs. All approaches include physical properties, which achieve 
a real simulation, but requires more processing. The main phenome to 
simulate is the fluid and its variations. Some approaches simulate the 
motion of few spheres; only one approach simulates millions of spheres. 
One approach employs similar computation for collision detection and 
other approach for collision response. In addition, one approach utilizes 
a tree structure to cull away primitives, this save time in the running time, 
but requires a preprocessing stage to prepare the Bounding Volume. 

4. Conclusion
A method which employs spheres to fill object volumes is proposed. The 
method provides the frozen process, which allows discarding spheres 
and polygons to reduce the number of operations during the run time. 
The difference with other approaches lies on the discard of primitives due 
to the frozen process, which allows avoiding expensive computations. 
The number of spheres increases when the volume is filling, but the 
number of operations holds. The method can be adjusted to a specific 
animation to simulate fluids, solids, smoke, etc. This method can be 
speeded up with a type of structure such as the Quad Tree employed 
in the experiments.
As further work, the algorithm is suitable to be parallelized by considering 
the sphere groups as handling with a thread. In addition, the animation 
can be extended to allow the motion of the volumetric object, making 
spheres to be unfrozen.
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