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Abstract

In this paper we introduce fast numerical algorithms for the solution
of the model [Total variation regularization cost function for demodu-
lating phase discontinuities, Journal Applied Optics, 53(11):2297-2301,
2014]. For each variable, background illumination, amplitude modu-
lation and phase map, we develop a fixed point method. Then, we
write all three algorithms in the same framework and analyze their
convergence rates, local smoothing factors by means of Local Fourier
Analysis and present experimental evidence of their performance on
synthetic and real world problems.

AMS subject class: 65N06, 35Q60, 65K10.
Keywords: variational methods, partial differential equations, iterative

algorithms, phase demodulation, fringe patterns.

1 Introduction

Metrology is the science of measuring a given characteristic of an object or
event. This characteristic may represent some physical quantities, such as
size, shape, deformation, refractive index, and temperature. Applications
of metrology are very important in many fields of Science and Engineering.
Therefore mathematical models and efficient numerical algorithms related
to this technique are in high demand.

Fringe analysis is a metrology technique for extracting measurement data
from fringe patterns [40]. Measurement data can be extracted by means
of phase demodulation, a process for accurately estimating the modulated
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phase from one or several fringe patterns projected over the object to be
measured [33, 35].

The basic mathematical model for a fringe pattern is given by

I(x, y) = a(x, y) + b(x, y) cos(ψ(x, y) + φ(x, y)) (1)

where a = a(x, y) is the background illumination, b = b(x, y) is the am-
plitude modulation, φ = φ(x, y) is the phase map to be recovered and
ψ = ψ(x, y) the usually known spatial carrier frequency. In the literature,
most methods for estimating the phase map consider it as a continuous and
smooth function; see for instance the works in [23, 32] and the references
therein.

Very recently however, Legarda-Saenz et al. [21], proposed a variational
model for estimating discontinuous phase maps from a single fringe pattern.
Their model was also able to estimate the background illumination and the
amplitude modulation. The authors presented experimental and synthetic
results showing that the new model is capable of outperforming state of the
art methods in terms of the quality of the estimated phase map.

Even though the quality of reconstruction of this model is out of dis-
cussion, the model still lacks of a fast algorithm for its realization putting
it in an unfavorable position in comparison to other models equipped with
fast solvers. The motivation of this work, is to introduce a fast numerical
algorithm to solve the optimality conditions of [21] allowing for very fast
solutions.

Up to our knowledge, different uni-level methods have been tested for
the task of processing fringe patterns. For instance, in [17], the authors, em-
ployed direct solvers and sparse representation for solving a two-dimensional
MRI phase unwrapping problem. In [30], the phase unwrapping problem
was solved using simulated annealing to remove noise in the phase map,
unwrap the wrapped phase, and reconstruct the surface of the detected ob-
ject. Guo et al. [16], proposed a total variation based model for phase
unwrapping that was solved using the Split Bregman algorithm. In [45],
a graph cuts-based optimization phase unwrapping algorithm was designed
to solve Markov random field (MRF) model. In [25], a preconditioned con-
jugate gradient algorithm was used for solving a quadratic regularization
functional. In [24], the authors used parallel algorithms for phase unwrap-
ping based on MRF as well. Many methods, however, use gradient based
methods [21, 38, 31, 42, 22].

The outline of this paper is as follows. In §2 we review the model to
be solved and present the optimality conditions consisting on three partial
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differential equations PDEs. In §3 we review the numerical solution of the
PDEs, the known difficulties and introduce fixed point methods for solving
each PDE. In §4, we present the numerical realization of the solvers and
use §5 to analyze numerically the local smoothing factor of the fixed point
algorithms by means of Local Fourier Analysis (LFA). The numerical re-
sults on both: synthetic and experimental data are presented in §6 and our
conclusions are given in §7.

2 Total variation (TV) based model

In this work, we are interested in the model presented in [21], where a
variational method with TV regularization to all three unknowns φ, a and
b as shown below was presented.

arg min
a,b,φ

TV (a, b, φ, g) ≡
{∫

Ω
(I − g)2dΩ +

1

λa

∫
Ω
|∇a|dΩ

+
1

λb

∫
Ω
|∇b|dΩ +

1

λφ

∫
Ω
|∇φ| dΩ

}
, (2)

where Ω ⊆ R2 is the domain of integration, g is a given fringe pattern,
obeying the model described in (1), and λa, λb, λφ are positive regularization
parameters.

As remarked in [21], this model allows the recovering of sharp phase
transitions, something that other methods such as those based on L2 reg-
ularization, fail to deliver. The model also allows to recover, at the same
time, the background illumination a and the amplitude modulation b.

To get the solution of (2), its is necessary to solve the optimality condi-
tions given by the following three partial PDEs:

−∇ · ∇a
|∇a|

+ λa(a+ b cos(ψ + φ)− g) = 0, (3)

−∇ · ∇b
|∇b|

+ λb(a+ b cos(ψ + φ)− g) cos (ψ + φ) = 0, (4)

−∇ · ∇φ
|∇φ|

+ λφ(a+ b cos(ψ + φ)− g)(−b sin (ψ + φ)) = 0 (5)

with boundary conditions

∂a

∂ν
= 0,

∂b

∂ν
= 0,

∂φ

∂ν
= 0. (6)

where ν denotes the unit outer normal to the boundary.

3



3 Numerical solution

As already stated in §1, most methods to process fringe patterns are lineal
and therefore it suffices to use gradient based algorithms. On the contrary,
the model in (2) is nonlinear. In this section, first we proceed to review the
known and feasible methods for the optimality conditions and then we will
move to propose ours.

A distinctive feature of the set of equations (3)-(5) is that all have an
anisotropic diffusion coefficient of the form D(u) = 1

|∇u| (for any u). As

pointed out in [7], it is known that differential equations with such type of
coefficients, represent a class of challenging problems in developing fast and
stable numerical algorithms. In the image processing literature, there are
many examples of PDE’s with similar diffusion coefficients. Maybe the most
studied of them is the Euler-Lagrange equation of the total variation based
image denoising model [34].

The first method we review is the very popular but very inefficient time
marching method. This gradient based method is obtained by transforming
each PDE into a parabolic form and then evolving it in time until reaching
steady-state. For instance, by defining the left-hand side of any of the PDEs
(3)-(5) as r(u), we can construct the following explicit Euler method:

uk+1
i,j = uki,j −∆t r(u)ki,j , (7)

where k = 0, 1, . . ., ∆t is the time-step and an initial condition u(x, y, 0) is
needed.

Explicit gradient descent methods used for the numerical solution of
equations with similar structure to (3)-(5) are well known to have very slow
convergence; see for instance [26] where a illustrative stability analysis was
presented for a TV based PDE for image denoising.

It is actually quite surprising that many authors choose this method to
solve their fringe pattern demodulation models, see for instance [38, 31, 42,
22]. Indeed, in [21], this method was selected to find the solution of (3)-(5)
even though thousands of iterations are necessary to reach a meaningful
solution.

There are ways of accelerating the convergence of the explicit Euler’s
method such as by multiplying r(u) in (7) by |∇u|. This idea was proposed in
[26] with some success but still not suitable for problems of large dimensions.

On the other hand, there is a handful of different numerical techniques
to speed up computations in total variation based imaging models but most
of them have not been tested for the fringe pattern demodulation problem.

4



For instance, the dual formulations proposed in [10, 12], the alternating
minimization algorithm of [19], the semi-smooth method introduced in [27],
the iterative regularization method based on Bregman distances by [28], and
the fixed point method in [43] are quite efficient methods worth to try for
(3)-(5). It is indeed the last method the one that we explore in this paper
and show to be very reliable and fast to find the solution of (2).

In the rest of this section, we present how to construct fixed point algo-
rithms for each PDE (3), (4), and (5).

A fixed point algorithm for a

In [5], it was recently proposed the following fixed point method for (3)(
−∇ · ∇

|∇ak|
+ λaI

)
ak+1 = λa(−b cos(ψ + φ) + g) (8)

which results in solving at each iteration a linear system of the form

La(a
k)ak+1 = fa (9)

for k = 0, 1, 2, . . . and where

fa ≡ λa(−b cos(ψ + φ) + g), (10)

La(a
k) ≡ −∇ · ∇

|∇ak|
+ λaI. (11)

Therefore, the fixed point algorithm consists on providing a initial es-
timation a0 and constructing a sequence of solutions {ak}k≥1 using (8).
The nonlinear operator La is linearized by lagging the nonlinear coefficients
|∇ak|−1 at every k-iteration. In this way, La(a

k) can be shown to be sym-
metric, positive definite and diagonally dominant. In [5], a preconditioned
conjugate gradient method (CGM) was proposed to solve the linear system.

A fixed point algorithm for b

In similar way, the following fixed point method was proposed in [5] for
solving (4)(

−∇ · ∇
|∇bk|

+ λb cos2 (ψ + φ)

)
bk+1 = λb(−a+ g) cos (ψ + φ). (12)
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where the right-hand side and linear operator are defined by

fb ≡ λb(−a+ g) cos (ψ + φ), (13)

Lb(b
k) ≡ −∇ · ∇

|∇bk|
+ λb cos2 (ψ + φ). (14)

Again Lb(b
k) happens to be symmetric, positive definite and diagonally

dominant. Hence the linear system

Lb(b
k)bk+1 = fb (15)

can also be solved with a preconditioned CGM or any other appropriate
method for this type of systems.

A new fixed point algorithm for φ

Following the same ideas, a feasible fixed point method for (5) can be con-
structed as follows:(
−∇ · ∇

|∇φk|

)
φk+1 = −λφ(a+ b cos(ψ + φk)− g)(−b sin (ψ + φk)), (16)

In this case, although the resultant linear system is symmetric, the operator
is only semi-positive definite and weakly diagonally dominant. Therefore,
convergence cannot be guaranteed for some solvers such as Jacobi, Gauss-
Seidel or CG.

To fix this, we linearize the cosine function in the right hand side getting
now the new fixed point iteration(

−∇ · ∇
|∇φk|

+ λφb
2 sin2(ψ + φk)

)
φk+1 =

−λφ sin(ψ + φk)(−ab+ gb− b2(cos(ψ + φk)− sin(ψ + φk)φk). (17)

Now the system

Lφ(φk)φk+1 = fφ, (18)

where

fφ ≡ −λφ sin(ψ + φk)(−ab+ gb− b2(cos(ψ + φk)− sin(ψ + φk)φk), (19)

Lφ(φk) = −∇ · ∇φ
k

|∇φk|
+ λφb

2 sin2(ψ + φk). (20)
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is positive definite and diagonally dominant and therefore a handful of
solvers is available.

We can see (17) as a fixed point algorithm for the following problem

φk+1 = min
p
J(p, φk) (21)

where

J ≡
∫

Ω

(
|∇p|+ λφ(a+ b(cos(ψ + φk)− sin(ψ + φk)(p− φk))− g)2

)
dΩ

(22)

Note that on the contrary to (2), J(p, φk) is a convex functional on p.
Finally, to compute all variables, we apply Algorithm 1

Algorithm 1 TV Algorithm

Require: a0, b0, φ0, νa, νb, νφ, TOL
Compute ga = |∇aTV (a0, b0, φ0)|,
Compute gb = |∇bTV (a0, b0, φ0)|,
Compute gc = |∇φTV (a0, b0, φ0)|
while ga ≥ TOL & gb ≥ TOL & gφ ≥ TOL do
ak+1 ← FP (ak, fka , λa, νa)
bk+1 ← FP (bk, fkb , λb, νb)
φk+1 ← FP (φk, fkφ , λφ, νφ)

Compute ga = |∇aTV (ak+1, bk+1, φk+1)|,
Compute gb = |∇bTV (ak+1, bk+1, φk+1)|,
Compute gc = |∇φTV (ak+1, bk+1, φk+1)|

end while

3.1 On the convergence of the fixed point algorithms

To prove convergence of the fixed point algorithms (8), (12) and (17), it
is enough to show that each one of them can be written as the general-
ized Weiszfeld’s method. By doing this, it is possible to guarantee their
global and linear convergence since these properties are inherited from the
Weiszfeld’s method [8].

In this section, first, we show that (8), (12) and (17) can be written in
a common framework and second we show that this framework is indeed a
generalized Weiszfeld’s method.
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To this end, we start by adopting the notation introduced in [8]. Let u
be a 2-dimensional array (ui,j) for i = 1, . . . , n, j = 1, . . . ,m. We use u to
represent any of the variables a, b or φ in (3), (4), and (5).

Let Ω = [0, n]× [0,m] be a continuous domain and (hx, hy) to represent
a vector of finite mesh sizes. Then the discrete domain Ωh can be defined as
Ωh = Ω ∩Gh where Gh = {(x, y) : x = xi = ihx, y = yj = jhy; i, j ∈ Z} is
an infinite grid.

The discrete gradient operator ∇i,j : Rn×m → R2 is defined as

∇i,ju =

(
ui+1,j − ui,j

hx
,
ui,j+1 − ui,j

hy

)
.

and its transpose represented by ∇Ti,j .
Now consider the general problem

min
u
F (u) ≡

m∑
i=1

ϕ(|ATi u|β) +
λu
2
‖Ku− d‖22 (23)

where ATi ∈ Rn×2 is a generalization of ∇Ti,j and ϕ : R → R with ϕ(x) = x
in this case. Let K be a bounded linear operator and assume that [8, 39]

Hypothesis 3.1

1. ϕ is C2.

2. ϕ(0) = 0.

3. ϕ is increasing for x ≥ 0, i.e., ϕ′(x) > 0, x ≥ 0.

4. ϕ is convex, i.e., ϕ′′(x) > 0.

5. υ(x) = ϕ(
√
x) is concave for x ≥ 0.

Then

F ′(u) =
∑
i

Ai

(
ϕ′(|ATi u|β)

|ATi u|β
ATi u

)
+ λuK

∗(Ku− d), (24)

which suggests the fixed point algorithm

∑
i

Ai

(
ϕ′(|ATi uk|β)

|ATi uk|β
ATi u

k+1

)
+ λuK

∗(Kuk+1 − d) = 0 (25)

8



Algorithms (8), (12) and (17) can be written in the form (25) by selecting
K ∈ Rmn×mn and d ∈ Rnm as follows:

Ki,j =


1 for i = j, 0 for i 6= j in (8)

cos(ψi,j + φi,j) in (12)
bi,j sin(ψi,j + φi,j) in (17)

(26)

di,j =


bi,j cos(ψi,j + φi,j)− gi,j in (8)

ai,j − gi,j in (12)
ai,j + bi,j cos(ψi,j + φi,j)

−bi,j sin(ψi,j + φi,j)φi,j − gi,j in (17)

(27)

We note that after computing d as shown in (27), we have to transform it to
a column vector d = (d11, d1,2, . . . , di,j , . . . , dm,n−1, dm,n). This finishes the
first part.

Now we move to show that (25) is a form of the generalized Weiszfeld’s
method. To do this, we follow the techniques described in [8] and [39].

The generalized Weiszfeld’s method consists on choosing a uniformly
strictly convex quadratic function G(w, u) approximating F (u) with the
following assumptions:

Hypothesis 3.2

1. G(w, u) = F (u) + (w − u), F ′(u)) + 1
2(w − u,C(u), (w − u)).

2. C(u) is continuous.

3. λmin(C(u)) ≥ µ > 0, ∀u.

4. F (w) ≤ G(w, u))∀w.

Then the generalized Weiszfeld’s method can be defined by

uk+1 = min
w
G(w, uk) (28)

where for fixed u, G(u,w) is C2, coercive, bounded below and strictly convex,
thus the minimum exists and can be obtained by

G′w(uk+1, uk) = F ′(uk) + C(uk)(uk+1 − uk) = 0. (29)

For the fixed point algorithm in (25) it is possible to define

C(uk) = A diag

(
ϕ′(|ATi uk|β)

|ATi uk|β
I2

)
AT + λuK

∗K, (30)
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with A = [A1, . . . , Am] and I2 a identity 2 × 2 matrix. Then, using this
definition of C(uk) and (24) it is not difficult to see that (25) corresponds
to the iteration (29) therefore property 1 in Hypothesis 3.2 holds.

To show property 2 in Hypothesis 3.2, note that continuity of C(u) is
guaranteed due to |ATi uk|β > 0.

Now, property 3 is fulfilled by noticing that K is a bounded non zero
linear operator, therefore we can define

λmin(C(u)) = min
‖w‖2=1

(w,C(u)w) (31)

and select µ = λmin(C(u)).
Now just rest to verify property 4 in Hypothesis 3.2 which is done by the

following argument: by property 1 in Hypothesis 3.2, and using (23) and
(24) we have that

G(w, u)− F (w) =
∑
i

(
ϕ(|ATi uk|β)− ϕ(|ATi wk|β)

)
+
λu
2

(
‖Ku− d‖2 − ‖Kw − d‖2

)
+
∑
i

ϕ′(|ATi uk|β)

|ATi uk|β
(
ATi u,A

T
i w −ATi u

)
+
λu
2

(K∗ (Ku− d) , w − u)

+
1

2

(
ATi (w − u),

∑
i

ϕ′(|ATi uk|β)

|ATi uk|β
ATi (w − u)

)

+
1

2
(w − u,K∗K(w − u))

=
∑
i

(
ϕ(|ATi uk|β)− ϕ(|ATi wk|β)

+
ϕ′(|ATi uk|β)

2|ATi uk|β

(
|ATi wk|2β − |ATi uk|2β

))
(32)

By defining, a = |ATi uk|β and b = |ATi wk|β, we can write (32) as

ϕ(a)− ϕ(b) +
ϕ′(a)

2a
(b2 − a2) (33)

and by definition of υ in Hypothesis 3.1 we get

υ(a2)− υ(b2) +
υ′(a2)

2a
(b2 − a2) (34)
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and being υ a concave function we get that property 4 in Hypothesis 3.2
holds. Therefore the fixed point framework (25) is a generalized Weiszfeld’s
method with global and linear convergence.

Following [8], it can be shown that, given the minimum u∗ of (23)

λk =
G(u∗, uk)− F (uk)

1
2(u∗ − uk, C(uk)(u∗ − uk))

, (35)

Λ = 1− λmin(C(u∗)−1F
′′
(u∗)) (36)

the fixed point method (25) is linearly convergent with convergence rate at
most

√
Λ where λk < Λ < 1. The proof is straightforward and we will be

omitted here.

y2
k+1 = (F (uk+1)− F (u∗)) ≤ Λ(F (uk)− F (u∗)) = Λy2

k (37)

4 Numerical realization

We proceed to outline the numerical realization of the multigrid algorithm.
From now on, we assume a continuous domain Ω = [0,m] × [0, n] and let
(hx, hy) to represent a vector of finite mesh sizes, then we define the infinite
grid by Gh = {(x, y) : x = xi = ihx, y = yj = jhy; i, j ∈ Z}, Ωh = Ω ∩Gh
and uh = uh(x, y) = uh(xi, yj) = uh(ihx, jhy) the discrete version of any
function u defined on Ωh. Derivatives are approximated using standard
forward and backward finite difference schemes

u+
x =

ui+1,j − ui,j
h

(38)

u−x =
ui,j − ui−1,j

h
(39)

u+
y =

ui,j+1 − ui,j
h

(40)

u−y =
ui,j − ui,j−1

h
(41)

The nonlinear terms by

|∇u|i+1,j = h/
√

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + h2β (42)

|∇u|i−1,j = h/
√

(ui,j − ui−1,j)2 + (ui−1,j+1 − ui−1,j)2 + h2β (43)

|∇u|i,j+1 = h/
√

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2 + h2β (44)

|∇u|i,j−1 = h/
√

(ui+1,j−1 − ui,j−1)2 + (ui,j − ui,j−1)2 + h2β (45)
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The TV operator by

∇ · ∇u
|∇u|β

=
u+
x

|∇u|i+1,j
− u−x
|∇u|i−1,j

+
u+
y

|∇u|i,j+1
−

u−y
|∇u|i,j−1

(46)

Finally, the Neumann’s boundary condition on ∂Ω is treated as

ui,0 = ui,1, ui,n+1 = ui,n, u0,j = u1,j , um+1,j = um,j . (47)

We can linearize globally all fixed point algorithms by freezing the non-
linear coefficients C·,·’s at the kth-step to obtain the same scheme given by

uk+1
i,j Ski,j − u

k+1
i+1,jC

k
i+1,j − u

k+1
i−1,jC

k
i−1,j − u

k+1
i,j+1C

k
i,j+1 − u

k+1
i,j−1C

k
i,j−1 = fki,j (48)

where for instance Cki+1,j = 1/|∇uk|i+1,j and so on, Ski,j = λu + Cki+1,j +

Cki−1,j + Cki,j+1 + Cki,j−1 and similarly

fki,j =


λa(−b cos(ψ + φ) + g) in (8)
λb(−a+ g) cos (ψ + φ) in (12)

−λφ(a+ b cos(ψ + φk)− g)(−b sin (ψ + φk)) in (16)
(49)

Note that fki,j is fixed for a and b while it changes at every iteration of
φ.

We note that it is common practice that the resulting system Lu(uk)uk+1 =
fki,j does not have to be solved accurately. This is, by partially solving it
with a few Gauss-Seidel (or any other iterative solver) iterations is enough
for the fixed point method to converge. We will estimate later the linear
convergence rate and, through Local Fourier Analysis, the smoothing fac-
tor (reduction of error high frequencies) of this method. In Algorithm 2,
this process of getting a partial solution by means of some iterations of the
lexicographic Gauss-Seidel method is presented.

5 Local Fourier Analysis

We already have shown that the general fixed point algorithm (25) enclos-
ing (8), (12) and (17) have global and linear convergence inherited from the
Weiszfeld’s method with linear convergence rate as expressed in (37). How-
ever, it is interesting to get more insight about the performance of (25) to
different frequencies of the error.

The appropriate tool for doing that is Local Fourier Analysis (LFA), a
technique which allows to perform a quantitative analysis of iterative meth-
ods [1, 41]. LFA can be used in two different ways: to obtain the local
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Algorithm 2 Fixed Point (FP) Algorithm u← FP (u, f, λu, ν)

for k = 1 to ν do
Compute Cki+1,j , C

k
i−1,j , C

k
i,j+1, C

k
i,j−1

for q = 1 to ζ do
for i = 1 to m do
for j = 1 to n do

uq+1
i,j =

uqi+1,jC
k
i+1,j+uq+1

i−1,jC
k
i−1,j+uqi,j+1C

k
i,j+1+uq+1

i,j−1C
k
i,j−1+fki,j

λu+Ck
i+1,j+Ck

i−1,j+Ck
i,j+1+Ck

i,j−1

end for
end for

end for
end for

amplification factor or to obtain the smoothing factor of a iterative algo-
rithm. On one hand, the local amplification factor gives information on how
fast all frequencies of the error are reduced at each iteration and therefore
can be used to study the rate of convergence of the algorithm. On the other
hand, LFA it is also helpful to study the performance of the algorithm for
reducing only the high frequencies of the error. This performance is repre-
sented by the smoothing factor which is a key value when the algorithm is
used in multilevel methods such as the multigrid method.

It is worth to notice that although the main application of LFA is to
evaluate the performance of an algorithm on linear problems with constant
coefficients on an infinite grid, LFA is a tool that has been used to get some
insight of discrete nonlinear operators; see the works of [4, 20, 1, 44, 7] and
the references therein. In this work, we use LFA to study the fixed point
methods (8), (12) and (16) and even though they have been designed to get
the solution of nonlinear problems, they can be seen as linear algorithms for
uk+1
i,j since all coefficients in Algorithm 2 are constant while iterating over q.

The way to analyze nonlinear problems with LFA implies that first
boundary conditions are neglected and the discrete operator is extended
to an infinite grid. In practice, this means that the values obtained through
LFA that are close to the boundaries will not be used. Then, it is assumed
that the nonlinear operator can be linearized locally (by freezing coefficients)
and can be replaced locally by an operator with constant coefficients [41].

Therefore, amplification and smoothing factors obtained thru LFA are
local, meaning that they will change as the iterative algorithm evolves. In
practice, a sequence of factors is constructed and the worst value is selected
to estimate the performance of the algorithm.
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5.1 LFA for the fixed point methods

The local iterations of any of the FP methods (8), (12), and (16), allow the
following stencil representation

1

h2

 0 0 0
−Cki−1,j Ski,j 0

0 −Cki,j+1 0

uq+1 = fki,j −
1

h2

 0 −Cki,j−1 0

0 0 −Cki+1,j

0 0 0

uq.
(50)

with C·,· and Si,j defined as it was done in §4.
First, we start by defining ūi,j as the true solution at the grid point (i, j)

and the error functions ξq+1
i,j and ξqi,j as it is usually done by ξq+1

i,j = ūi,j−uq+1
i,j

and ξqi,j = ūi,j − uqi,j . Then, we expand errors in Fourier components as

ξq+1
i,j =

m/2∑
φ1,φ2=−m/2

ψq+1
φ1,φ2

eiθ1x/heiθ2y/h (51)

and

ξqi,j =

m/2∑
φ1,φ2=−m/2

ψqφ1,φ2e
iθ1x/heiθ2y/h (52)

where θ = (θ1, θ2) ∈ Θ = (−π, π]2 , θ1 = 2πφ1/m, θ2 = 2πφ2/n and
i =
√
−1.

Based on these assumptions, we can substitute (51)-(52) into the equa-
tion in Algorithm 2 to obtain the error equation

−Ski,jξ
q+1
i,j + Cki+1,j ξ

q
i+1,j + Cki−1,j ξ

q+1
i−1,j + Cki,j+1 ξ

q
i,j+1 + Cki,j−1 ξ

q+1
i,j−1 = 0,(53)

where the superscript k on the coefficients is just to indicate that they were
computed (frozen) at the kth outer iteration. Then, the local amplification
factor is given by

S̃h(θ)i,j =

∣∣∣Cki+1,j e
iθ1 + Cki,j+1 e

iθ2
∣∣∣∣∣∣Ski,j − Cki−1,j e

−iθ1 − Cki,j−1 e
−iθ2

∣∣∣ . (54)

Now we can separate the analysis by computing the values

ρi,j = sup{|S̃h(θ)i,j | : θ ∈ Θhigh = [−π, π)2} (55)
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and

µi,j = sup{|S̃h(θ)i,j | : θ ∈ Θhigh = [−π, π)2\[−π
2
,
π

2
)2}. (56)

We will refer to ρi,j as the local amplification factor and to µi,j as the
smoothing factor at points (i, j). Finally, we define

ρ̄ = sup{ρi,j : (i, j) ∈ Ωh}
µ̄ = sup{µi,j : (i, j) ∈ Ωh}

to be the local amplification factor and smoothing factor of the fixed point
algorithm at the kth iteration.

The value of ρ̄ will give some insight about the convergence properties
of the fixed point method while the value of µ̄ will provide knowledge about
its smoothing properties i.e how good the algorithm is to remove the high
frequency components of the error. A good smoothing factor is vital for
multigrid algorithms to perform well.

There are things to consider about the usage of both factors. Recall
that they are only valid locally and will vary depending on some factors:
the parameters λu, β for instance, the values of the coefficients C·,·, the
smoothness of the phase map and so on. The level of confidence of the
computed factors will improve as the algorithm reaches converge since, close
to this point, the coefficients will start to remain constant. Overall, LFA is
used to get some insight about the performance of the algorithm.

We note that for the our fixed point algorithms, we already have a way
to compute the global rate of convergence hence ρ̄, which is only local, it is
of less interest to us. In §6 we will focus mainly on the smoothing factor µ̄

6 Results

In this section, we will shortly present and discuss some results. We start by
showing the convergence rates for ak, bk, φk and TV (ak, b, φ), TV (a, bk, φ),
TV (a, b, φk) and then move on to present LFA data gathered from some
experiments to show that the fixed point methods developed are indeed
good smoothers.

6.1 Test problems

To test our fixed point algorithms, we designed two synthetic problems both
having jumps on each variable: phase map φ, background illumination a,
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and amplitude modulation b. On one hand, Figure 2, shows the Test problem
1, where the phase map has a simple bowl-like shape with a squared jump.
On the other hand, Figure 6 shows the Test problem 2, where the phase
map has a more complicated shape having smooth and piece-wise constant
regions as well as corners. Finally, our third Test problem is a real problem
illustrated in Figure 9.

6.2 Convergence experiments

The results we present in this section are the convergence rates obtained by
running our algorithms on the Test problem 1, however similar rate values
were obtained for Test problems 2 and 3. We study here the convergence
rates for uk and TV (·, ·, uk) for each fixed point method. We note that the
convergence rate for uk is related to that for TV (·, ·, uk) by (37) thus it is
enough to consider the convergence rate for the later.

First, we show in Figures 12, 14, and 16 that the linear convergence
rates λka, λ

k
b and λkφ (for each fixed point method) indeed converge to limits

Γa,Γb,Γφ as predicted by (36). We note that a naive computational imple-
mentation of (35) may produce incorrect results since it gets ill-conditioned
when uk → u∗. Therefore, to compute λk-linear rates, we used the same
strategy as in [8] and to avoid miscalculations due to rounding errors, the
rates were instead estimated by constructing a sequence of values zk(β) =

TVβ(·, ·, uk)−TVβ(·, ·, u∗) and then computing r(β) = limk→∞
zk+1

zk
where u∗

is the true solution that was computed to full precision using floating point
arithmetic of 64 bits with residual equal to 10−12. For these experiments,
the initial guess used was Gaussian white noise for all variables.

By looking at the Γ-values, we observe that for this experiment they
settled to Γa ≈ 0.95, Γb ≈ 0.95 and Γφ ≈ 0.93. The worse rates for Γa,Γb
maybe explained by the fact that the true solutions for a and b are simple
planes with low inclination and values close to zero. Hence the operators
La, Lb are close to being weakly diagonally dominant only.

Second, we show in Figures 11,13, and 15 the way the rate of convergence
deteriorates when the parameter β is reduced. This is opposite to what was
reported in [8] for a similar fixed point algorithm but it is in accordance
to what has been reported in numerous articles along many years for also
similar fixed point algorithms. Fortunately, in practice a value of β ≈ 10−3

showed to be enough to recover sharp edges.

16



6.3 LFA experiments

In order to evaluate experimentally the smoothing quality of the proposed
fixed point methods, we carried out numerical simulations over the fringe
demodulation Test problems. At each fixed point iteration, we computed µ̄.
We let the fixed point to iterate three times and then multiply the µ̄-values
i.e µ̂ = µ̄1µ̄2µ̄3 which will be taken as the smoothing factor of the fixed point
method.

The smoothing factors for Test problems 1,2,3 are given in Table 1,
for phase, background illumination and amplitude modulation respectively.
The numbers in Table 1, show that with three fixed point iterations we can
get a smoothing factor equivalent to that of the lexicographic Gauss-Seidel
method for the Laplacian equation. Recall, that the Laplacian equation is a
linear PDE while the ones being solved here are nonlinear. Therefore, non
standard methods have to be used as smoothers.

Having a good smoother is a key component for the implementation of
multilevel algorithms. Based on the promising results shown in Table 1, we
tested the fixed point algorithm for the phase map φ to see its performance
within a nonlinear multigrid algorithm. In Figure 17 we present the iteration
history of the MG algorithm for solving the Test problem 1. It is evident
that convergence of the MG algorithm is very fast as expected and few
FAS-cycles are needed to reach very low residual values. The large residual
reduction in the first cycle is natural since we are using Gaussian random
noise as initial guess and the MG hierarchy of grids acts as a low pass filter.
From the second iteration and on, the residual is reduced considerably at
each MG cycle at constant rate.

Unfortunately, MG convergence for Test problems 2 and 3 was not good
at all. After a carefull analysis, it was observed that transporting the cor-
rections to the next levels (either up or down the hierarchy of grids) or
approximating the nonlinear operators was not working. Our conclusion is
that a geometric multigrid is not the best choice for phase demodulation
problems. As part of our future work, we will test the algebraic multigrid
algorithm to evaluate its performance.

6.4 Quality of reconstruction

Finally, we discuss shortly the quality of reconstruction obtained with the
fixed point algorithms. Although this has been addressed in [21], we want
to remark that piece-wise constant regions and sharp edges are recovered
with fair precision by the model and the algorithm in both synthetic and
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real world problems. This is shown in Figures 4, 8 and, 10.

7 Conclusions

In this paper we have introduced three fixed point algorithms for the solution
of the Total Variation based model for demodulating phase discontinuities
presented in [21]. Finding the solution of this model involves solving nu-
merically three nonlinear and anisotropic PDE’s. Although the framework
of our fixed point algorithms is pretty standard, we present a theoretical
analysis showing their convergence and further by means of Local Fourier
analysis we gathered enough experimental evidence to show that in fact,
these fixed point methods have very good smoothing properties. Early ex-
periments showed that even the good performance of these non standard
smoothers is not enough to get always convergence of a geometric multigrid
algorithm. We noted that geometric multigrid suffers from approximating
the nonlinear operators and corrections in the hierarchy of grids, underper-
forming on hard problems. Therefore a algebraic multigrid algorithm would
be tested in the future.
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Problem µ̂φ µ̂a µ̂b

Test Problem 1 0.705 0.681 0.673

Test Problem 2 0.756 0.733 0.691

Test Problem 3 0.742 0.721 0.687

Table 1: Results of the LFA experiments.
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Figure 1: One line of the 2-D true and recovered variables.

Figure 2: Fringe pat-
tern.

Figure 3: True phase
map.

Figure 4: Recovered
phase map.

23



Figure 5: One line of the 2-D true and recovered variables.

Figure 6: Fringe pat-
tern.

Figure 7: True phase
map.

Figure 8: Recovered
phase map.

Figure 9: Experimental fringe pat-
tern.

Figure 10: Estimated phase term us-
ing (2).
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Figure 11: Residual iteration history
for the background illumination vari-
able a for the Synthetic Test problem
for different values of β.

Figure 12: Convergence rates itera-
tion history for the background illu-
mination variable a for the Synthetic
Test problem using β = 0.001.

Figure 13: Residual iteration history
for the amplitude modulation variable
b for the Synthetic Test problem for
different values of β.

Figure 14: Convergence rates itera-
tion history for the amplitude modu-
lation variable b for the Synthetic Test
problem using β = 0.001.
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Figure 15: Residual iteration history
for the phase map variable φ for the
Synthetic Test problem for different
values of β.

Figure 16: Convergence rates itera-
tion history for the phase map vari-
able φ the Synthetic Test problem us-
ing β = 0.001.

Figure 17: Multigrid algorithm cycle history for Test problem 1.
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