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Departamento de Matemáticas, Universidad Autónoma Metropolitana
Unidad Iztapalapa, 09340, Ciudad de México, México
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Abstract

In this paper, we give criteria for a polynomial to be a permuta-
tion polynomial of a local finite commutative ring with identity. These
criteria generalize known results established for finite fields.

On the other hand, we also study the permutation polynomials on
this type of rings that are self-invertible.
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1 Introduction

Permutations play an important role in areas of transmission and information
security, for example in the design of some encryption algorithms and in the
design of the so-called S-boxes [7]. They are also important in error-correcting
codes.
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We must generate such permutations in an agile manner. One way to do
this is through the so-called permutation polynomials.

Let R be a finite commutative ring. A polynomial f(x) with coefficients
in R is said to be a permutation polynomial of R if the induced function
f : c 7→ f(c) from R to itself is a bijection, that is, if f is a permutation on R.

For the most part, these polynomials have been studied on finite fields. In
this context, recent applications of them can be found in [8].

In this paper, we use some criteria for a polynomial to be a permutation
polynomial to generalize to local finite commutative rings some known results
for finite fields.

For some applications, for certain given permutation, it is important to
determine its inverse and that this inverse can be found efficiently from the
computational point of view. For example, self-invertible permutation poly-
nomials are convenient since no additional work is required to determine their
inverse. Here, we characterize the null polynomials in local finite commutative
rings and use these polynomials to give conditions for a polynomial to be self-
invertible in this class of rings. This generalizes the results found in [1] for the
local rings Zpn .

Let us fix the notation to be used. From now on,

• R will denote a finite local commutative ring with identity.

• The maximal ideal of R is denoted by m 6= 0.

• The residue field is F = R
/
m of order q = pδ, where p is a prime number.

• Let – : R → F be the canonical projection that sends each element to
its residue class module m.

Note that R is not a finite field, since its maximal ideal m 6= 0.

2 Criteria for permutation polynomials

Because of the finiteness of R, the definition of a permutation polynomial can
be expressed in several equivalent ways:

1. f(x) is a permutation polynomial of R;

2. the function f from R into R induced by f(x) is one-to-one or onto;

3. for every a ∈ R, the equation f(z) = a has a solution in R.
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Remark 2.1. The linear coefficient of a permutation polynomial of R is
a unit since m is a nilpotent ideal, this fact follows, in a simple way, from
Nakayama’s lemma [6, p. 84]; indeed, if its nilpotency index is n ≥ 2 and if

f(x) = ax + x2g(x)

is in R[x] with a ∈ m, then f(mn−1) = 0 but mn−1 6= 0. Thus, if f(x) is a
permutation polynomial, then a 6∈ m and so, a is a unit.

Theorem 2.2. A polinomial ax + x2g(x) in R[x] with a ∈ R∗ is a permu-
tation polynomial of R if and only if the induced function permutes the units
of R.

Proof. Let f(x) = ax + x2g(x) as above. Then

f(x)− f(y) = (x− y)[a + h(x, y) ] (1)

for some polynomial h(x, y) in two indeterminates over R with constant term
zero.

Assume that f permutes the units of R. Since R∗ = R \m, to prove that
f(x) is a permutation polynomial it is suffices to show that f permutes the
elements of the maximal ideal m. Let b, c ∈ m such that f(b) = f(c). Since
d = h(b, c) is in m and a is a unit, its sum a + d is also a unit and therefore,
from (1) it follows that b = c. This proves the sufficiency.

To prove the necessity, we note that f(a) ⊆ a for any ideal a of R. So if
f is a permutation on R then f(m) = m by finiteness. Thus f permutes the
units of R.

The following lemma is useful in the proof that we present of the established
criterion in [4, Proposition 4.34, p. 165]. For another approach see [3, Theorem
3.3, p. 205]

First, we extend the canonical projection of the ring R to the polynomial
ring R[x] in the natural way: for g(x) = a0 + a1 + · · · + anx

n we let g(x) =
a0 + a1x + · · ·+ anx

n.

Lemma 2.3. If g(x) is a regular polynomial in R[x] and c ∈ F is a simple
root of g(x), then g(x) has one and only one root a ∈ R such that a = c.

Proof. See [6, Lemma XV.1, p. 292].

With respect to Lemma 2.3, if c ∈ F is a multiple root of g(x), the situation
is somewhat different as shown in [6, pp. 269-271]. In this case, if there exists
such root a ∈ R of g(x) with the property a = c, then it is not unique.
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Example 2.4. Let n ≥ 1 be a divisor of q − 1. The equation zn = 1 has
exactly n solutions in R by Lemma 2.3, because xn − 1 is a binomial with
precisely n roots in F and all them are simple roots according to the derivative
criterion. In particular, if q is odd the only solutions in R of the equation
z2 = 1 are ±1.

Theorem 2.5. A polynomial g(x) in R[x] is a permutation polynomial of
R if and only if the following two conditions simultaneously hold:

1. g(x) is a permutation polynomial of F ;

2. the formal derivative g′(x) does not vanish on F .

Proof. For simplicity, for every a ∈ R we let ga(x) = g(x)− a.
Suppose first that g(x) is a permutation polynomial of R. Condition (a)

holds since for every c ∈ R we have that g(c) = g(c), so that g permutes
the elements of F . On the other hand, in accordance to the discussion after
Lemma 2.3, if g′(x) has a root c ∈ F , then the number of roots of gc(x) in R
is either zero or at least two, which is impossible since each gc(x) has exactly
one root in R. Thus, condition (b) is satisfied.

Conversely assume that both conditions (a) and (b) hold. Hence, every
gc(x) has an only root in F which is simple by the derivative criterion. From
here, Lemma 2.3 implies that every polynomial gc(x) has a root in R and so,
g is onto. This ends the proof.

2.1 Some examples of permutation polynomials

An immediate consequence of Theorem 2.5 is the following result that allows
to obtain new permutation polynomials from one given by adding nilpotent
monomials.

Corollary 2.6. Let f(x) be a permutation polynomial of R. Then

h(x) = f(x) +
m∑
n=0

bnx
n

is also a permutation polynomial of R provided that b0, . . . , bm all lie in m.

Proof. It follows from the fact that b0, . . . , bm in F are all zero.

Next we give some examples of criteria for permutation polynomials over
finite fields that generalize to finite local commutative rings by using Theorem
2.5. For this we only need to consider the formal derivatives.
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Example 2.7. Let a ∈ R∗. In R[x], consider the p-polynomial

g(x) = ax +
k∑

n=1

cnx
pn,

where p is the characteristic of F . Since g′(x) = a 6= 0, Theorem 2.5 implies
that g(x) is a permutation polynomial of R if and only if g(x) is a permutation
polynomial of F ; but this amounts to the fact that the only root of g(x) in F
is zero according to [5, Theorem 7.9, pp. 351].

Example 2.8. Let a ∈ R∗ and let k ≥ 1 be an integer. The Dickson
polynomial

gk(x, a) =

[k/2]∑
n=0

k

k − n

(
k − n

n

)
(−a)nxk−2n

is a permutation polynomial of R if and only if (k, pq2 − p) = 1. This is a
consequence of a result in [4, Theorem 9.43, pp. 209], which states that gk(x, a)
is a permutation polynomial of F if and only if (k, q2 − 1) = 1, and that when
this occurs its formal derivative does not vanish on F if and only if k is no
divisible by the characteristic p of F .

Example 2.9. Let a ∈ R∗. If the characteristic p of F is different from 2,
then ax+x(q+1)/2 is a permutation binomial of R if and only if a 2 = d2 + 1 for
some d ∈ F ∗ and 2a 6= ±1. Indeed, ax+x(q+1)/2 is a permutation binomial of
F if and only if a 2 − 1 is a square in F ∗, see [5, Theorem 7.11, p. 352]. On
the other hand, its formal derivative a+2−1x(q−1)/2 has a root in F if and only
if 2a = ±1. To see this we recall that every c ∈ F ∗ satisfies cq−1 = 1; so that
c(q−1)/2 is a solution of z2 = 1 and therefore it is either 1 or −1 in accordance
to Example 2.4.

Further examples can be obtained by formal composition of polynomials.
We say that a finite local commutative ring S is a finite local extension of

R when it contains R as a subring.

Lemma 2.10. If the field K is a finite extension of the field F , then K is
the residue field of a finite local extension S of R.

Proof. The K field is a primitive extension of the field F , that is, K = F (a),
where a is a root of an irreducible monic polynomial f in F [x]. Then its
monic uplift f ∈ R[x] is irreducible basic and S = R[x]/(f) is a local finite
commutative ring containing R [6, Corollary XIV.10, p. 289]. Now, S is R -free
and

deg f = dimR S = dimF K ′ = deg f,

where K ′ is the residue field of S [6, p. 295]. From here, K ′ ∼= K.
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Theorem 2.11. A polynomial f(x) in R[x] is a permutation polynomial of
all finite local extensions of R if and only if it is of the form

f(x) = c + ax +
m∑
n=2

cnx
n,

where a is a unit and c1, . . . , cm all lie in m.

Proof. The sufficiency is an immediate consequence of Corollary 2.6.
Before proving the necessity it should be noted the following. Let S be a

finite local ring with residue field K and suppose R ⊆ S. Then, the maximal
ideal of R is contained in the maximal ideal of S because every member of m
is a nilpotent element of R, and therefore, of S. This ensures the existence of
a monomorphism from F into K, which is defined in the obvious way. So, we
can think in an inclusion F ⊆ K.

Now we are ready to complete the proof. Let f(x) be a permutation polyno-
mial of all finite local extensions of R. Therefore, by condition (a) of Theorem
2.5 and by Lemma 2.10 above, f(x) is a permutation polynomial of all finite
extensions of F . So, there is a ∈ R∗ such that

f(x) = axp
k

+ c,

for some integer k ≥ 0. This claim is proven in [5, Theorem 7.14, p. 354] for
arbitrary finite fields.

However, the linear coefficient of f(x) must be a unit by Remark 2.1. Thus
k = 0.

It is well-known that∑
a∈F

am =

{
1 if q − 1 divides m;

0 otherwise.
(2)

Theorem 2.12. Let d > 1 be a divisor of q−2 and let dk = q−2. If p does
not divide k + 1 then no binomial ax + xd in R[x] is a permutation binomial
of R.

Proof. Let f(x) = ax + xd and by contraposition, assume that it is a permu-
tation binomial of R. Therefore a 6= 0 by Remark 2.1 and hence, condition (a)
of Theorem 2.5 implies that f(x) is a permutation binomial of F .

Next, property (2) yields∑
c∈F

f(c) k+1 =
∑
c∈F

[
ac + cd

]k+1
= 0 (3)

because the induced function f permutes the elements of F and (q−1) - (k+1).
By contradiction, suppose that q − 1 divides to k + 1, (q − 1)t = k + 1. Then,
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since dk+1 = q−1, (dk+1)t = k+1. This implies that k(dt−1)+(t−1) = 0.
If t = 1 then d = 1, a contradiction. If t > 1, then k(dt− 1) > 0 and t− 1 > 0
and there is no way that the sum is zero.

Now, given an integer n such that 0 ≤ n ≤ k + 1, we denote m = (n −
1)(d − 1). We claim that q − 1 divides m if and only if n = 1. Indeed, we
have |m| ≤ q − 2 since dk = q − 2; from here, q − 1 divides m if and only if
m = 0. But as d > 1, we deduce that m = 0 if and only if n = 1. From (2),
we obtained ∑

c∈F

cdk+d−nd+n =

{
1 if n = 1;

0 otherwise,

since d − nd + n = 1 − m. This together with (3) yields (k + 1)a = 0 after
expanding the binomials and changing the order of the sums. So, as a 6= 0 we
get k + 1 = 0 as element of F , that is, as integer, k + 1 is divisible by p.

Remark 2.13. Theorem 2.12 also holds for finite fields and its proof is
essentially the same.

3 Null polynomials

A polynomial f(x) with coefficients in A is called null polynomial of A if f = 0;
that is, if the associated polynomial function is the zero function, f(a) = 0 for
every a ∈ A.

Example 3.1. The null polynomials of a finite field K of order q are pre-
cisely, by the division algorithm, those polynomials in K[x] which are divisible
by the binomial xq − x of degree q.

Lemma 3.2. If f(x) is a null polynomial of R of degree less than q, then
f(x) = 0.

Proof. Let a0, . . . , aq−1 be q elements in R such that ai 6= aj when i 6= j and
let f(x) be a polynomial in R[x] which vanishes in a0, . . . , aq−1. Then, by the
remainder theorem, every x − aj divides f(x). We claim that f(x) is also
divisible by

u(x) =

q−1∏
j=0

(x− aj)

in R[x]. This can be proved inductively since if

f(x) =
k−1∏
j=0

(x− aj)h(x)
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for some integer k with 1 ≤ k ≤ q−1 then f(ak) = 0 implies h(ak) = 0 because
ak − aj is a unit when j < k, and therefore, x− ak divides h(x).

Now, suppose that f(x) is a null polynomial of R of degree less than q. Then
f(x) is divisible by the monic polynomial u(x) of degree q. So, f(x) = 0.

We next give a characterization of null polynomials of R when the only
maximal ideal of R is a principal ideal, say m = (e). This generalizes a result
in [2, Theorem 27, p. 22]. We will give a proof along the lines of the mentioned
theorem.

Theorem 3.3. Let m = (e) with nilpotency index n. Then, a polynomial
f(x) in R[x] is a null polynomial of R if it is expressible as

f(x) =
n∑
j=1

en−j(xq − x)jfj(x) (4)

where the fj(x) are in R[x]. The converse is true when n < q.

Proof. The first assertion is trivial since e divides dq − d for every d ∈ R and
en = 0.

On the other hand, we assume that n < q and prove that if f(x) is a
null polynomial of R then it is of the form (4). We proceed by induction on
nilpotency index of m. The case n = 1, which corresponds to finite fields, was
discussed in the Example 3.1. Next, we suppose that assertion is true for n−1,
with 1 < n < q.

Let S = R
/
mn−1. Hence, S is a finite local ring and its maximal ideal

m
/
mn−1 is a principal ideal with nilpotency index n − 1. The induction hy-

pothesis implies

f(x) =
n−1∑
j=1

en−1−j(xq − x)jfj(x) + en−1h(x) (5)

in R[x], as one can see by lifting the corresponding expression (4) from S[x]
to R[x].

Now, let a ∈ R. Then there is c ∈ R such that aq − a = ec. So,

(a + ex)q − (a + ex) = e(c− x) + e2r(x)

for some r(x) in R[x]. Hence, for any 1 ≤ i ≤ n− 1, we get

en−1−i
[
(a + ex)q − (a + ex)

]
i = en−1(c− x)i.
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By replacing x by a + ex in (5), we obtain

f(a + ex) =
n−1∑
j=1

en−1(c− x)jfj(a + ex) + en−1h(a + ex)

= en−1
[ n−1∑

j=1

(c− x)jfj(a) + h(a)
]

and thus, replacing x by c− x, we conclude

f(a + e(c− x)) = en−1
[ n−1∑

j=1

xjfj(a) + h(a)
]

= 0

by Lemma 3.2 since this polynomial is also a null polynomial of R but its
degree is less than q. Consequently, h(a) and every fj(a) are divisible by e for
every a ∈ R because a was arbitrarily chosen. From here, we can deduce that
h(x) as well as each fj(x) are null polynomials of F . Therefore, in R[x] we
have

fj(x) = (xq − x)sj(x) + ekj(x),

and in a similar way,

en−1h(x) = en−1(xq − x)k(x).

The induction is completed by replacing this in (5) and then relabeling
terms.

4 Self-invertible permutation polynomials

A permutation polynomial f(x) of R is said to be self-invertible if the permu-
tation f that it induces on R has order 2, that is, if the inverse of f is itself.

Given a polynomial f(x) in R[x] we associate it with the polynomial

f∗(x) = f ◦f(x)− x,

where the symbol ◦ indicates formal composition of polynomials.

Remark 4.1. If f(x) is a self-invertible permutation polynomial of R of
degree less than

√
q then, as consequence of Lemma 3.2, f∗(x) = 0.

Theorem 4.2. Let g(x) = ax+ bxm + xm+1h(x) be a self-invertible permu-
tation polynomial of R of degree n <

√
q, with b 6= 0 and m > 1 . Then, except

for a, all coefficients of g(x) lie in m. Also, a2 = 1 and if 2b 6= 0 then m is
even and a 6= 1.
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Proof. By Remark 4.1, g∗(x) = 0 and thus, g∗(x) = 0. This implies that g(x)
has degree 1 and proves the first claim.

On the other hand, it is not hard to see that

g∗(x) = (a2 − 1)x + ab(1 + am−1)xm + xm+1k(x),

so that a2 = 1. Finally, if a = 1 or if m is odd, then am−1 = 1 and, hence,
2b = 0.

Corollary 4.3. Suppose p 6= 2 and let g(x) = ax + bxn be a self-invertible
permutation binomial of R of degree n <

√
q. Then n is even, a = −1 and

nb2 = 0.

Proof. From Theorem 4.2 it follows that a2 = 1, n is even and a 6= 1 since
2b 6= 0. Here we have used the fact that 2 ∈ R is a unit. Hence a = −1 by
Example 2.4. Therefore,

g∗(x) = −b2x2n−1 [n− bxn−1h(x) ],

which implies nb2 = 0 because of g∗(x) = 0 by Remark 4.1. This ends the
proof.

Example 4.4. Every permutation polynomial of R of the form

f(x) = −x +
m∑
n=2

cnx
2n

with c2, . . . , cm such that crcs = 0 for all r, s is self-invertible since f∗(x) = 0.

Theorem 4.5. A permutation polynomial ax + bx2 + cx3 of R is self-
invertible provided that a = −1, c = −b2 and c2 = 0. The converse holds
when q is odd and q > 9.

Proof. Let f(x) = ax + bx2 + cx3. The first claim is straightforward since

f∗(x) = (a2 − 1)x + ab(1 + a)x2 + a(a2c + 2b2 + c)x3

+ b(b2 + 2ac + 3a2c)x4 + c(2b2 + 3ab2 + 3a2c)x5

+ bc(c + 6ac + b2)x6 + 3c(b2 + ac)x7 + 3bc3x8 + c3x9.

Next, we assume that q is odd and q < n2, where n is the degree of
ax+ bx2 + cx3. We will prove that if f is a permutation on R of order 2, then
a = −1, c = −b2 and c2 = 0. Without loss of generality, we also suppose n > 1.
First note that f∗(x) = 0 by Remark 4.1, so that a2 = 1. Now, as 2a is a unit,
from a(a2c + 2b2 + c) = 0, we get b2 = −c; meanwhile from ab(1 + a) = 0, it
follows that a = −1 by Example 2.4 since a = 1 implies b = 0 and so c = 0, a
contradiction. Finally, by replacing this in c(2b2 + 3ab2 + 3a2c) = 0, we obtain
c2 = 0.
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