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Augmented Lagrangian method for a
total variation-based model for
demodulating phase discontinuities

Ricardo Legarda-Saenz and Carlos Brito-Loeza

Abstract

In this work, we reformulate the method presented in App. Opt. 53:2297 (2014) as a constrained minimization problem

using the augmented Lagrangian method. First we introduce the new method and then describe the numerical solution,

which results in a simple algorithm. Numerical experiments with both synthetic and real fringe patterns show the

accuracy and simplicity of the resulting algorithm.
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Introduction

The main goal of fringe analysis techniques is to recov-

er accurately the local modulated phase from one or

several fringe patterns;1 such phase is related to some

physical quantities like shape, deformation, refractive

index, temperature, etc. The basic model for a fringe

pattern is given by

Ix ¼ ax þ bxcos xx þ /xð Þ (1)

where x ¼ ðx1; x2Þ; ax is the background illumination,

bx is the amplitude modulation, and /x is the phase

map to be recovered; the spatial carrier frequency of

the fringe pattern is defined by the term xx.
Several methods which successfully estimate the

phase from a single pattern have been reported in the

literature.2–5 These methods consider phase maps,

amplitude, and illumination terms as a continuous.

However, the recovery of a discontinuous phase map

from a single fringe pattern remains a pending task and

is a challenging problem. Some years ago, a method for

computing discontinuous phase maps of a fringe pat-

tern with carrier frequency was proposed, based on the

minimization of a regularized cost function, which uses

a second-order edge-preserving potential.6 Although

this method can detect and reconstruct phase disconti-

nuities, its cost functional is not convex, hence

convergence to an optimal solution is conditioned to
the provided initial phase usually computed by stan-
dard methods.

In recent work, a method for computing discontin-
uous phase maps based on a total variational (TV)
approach was proposed,7 where TV regularization is
applied to the background, amplitude and phase
terms of the fringe model, resulting in accurate phase
reconstructions.8 Despite this fact, this model lacks a
fast algorithm for its solution. Recently, a fixed point
(FP) method to speed up the numerical solution of this
model was proposed.9 This FP method shows a good
performance solving the model presented in Legarda-
Saenz et al.;8 however, similar to other methods based
on the TV approach, the FP method performance is
dramatically reduced for problems highly anisotropic.

In this work, we reformulate the model presented in
Legarda-Saenz et al.8 as a constrained minimization
problem using augmented Lagrangian method
(ALM). First, we describe the ideas that give support
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to our reformulation, and then we describe the numer-

ical solution of the proposed ALM, which results in a

simple algorithm. The performance of the proposed

method is evaluated by numerical experiments with

both synthetic and real data. A comparison against

the FP method is presented. Finally we discuss our

results and present some concluding remarks.

Methodology

Fixed point method for computing discontinuous

phase maps based on TV model

The method proposed for computing discontinuous

phase maps based on TV approach8 is given by

min
/;a;b

Eð/x; ax; bx;xxÞ ¼ k
2

Z
X
Ix � gxð Þ2dxþ

Z
X
r/xj jdx

þ
Z
X
raxj jdxþ

Z
X
rbxj jdx

(2)

where X � R2 is the domain of integration, gx is the

given fringe pattern, and k is the regularization param-

eter. As it was shown in Legarda-Saenz et al.,8 this

model allows the accurate demodulation of a single

fringe pattern with discontinuities. The first-order opti-

mality conditions or Euler–Lagrange equations of

equation (2) are given by

k Ix � gxð Þ @Ix
@/x

�r � r/x

r/xj j ¼ 0;

k Ix � gxð Þ @Ix
@ax

�r � rax
raxj j ¼ 0;

k Ix � gxð Þ @Ix
@bx

�r � rbx
rbxj j ¼ 0

(3)

with boundary conditions

r/x

r/xj j � n ¼ 0;
rax
raxj j � n ¼ 0;

rbx
rbxj j � n ¼ 0 (4)

where n denotes the unit outer normal to the boundary.
The numerical solution proposed in Legarda-Saenz

et al.8 was a gradient descent scheme which is very slow

and therefore a large number of iterations are necessary

to reach an adequate solution. To speed up the conver-

gence, a FP method10,11 was proposed recently:9

First, equation (3) is written in the following way

kðaxþ bxcoswx� gxÞð�bxsinwxÞ�r � r/x

r/xj j ¼ 0;

kðaxþ bxcoswx� gxÞðcoswxÞ�r � rbx
rbxj j ¼ 0;

kðaxþ bxcoswx� gxÞ�r � rax
raxj j ¼ 0

(5)

where the term wx is defined as wx ¼ xx þ /x:
In Vogel and Oman,10 a FP method to solve the TV

model was proposed. The basic idea is to linearize the
nonlinear term of this model, so that at each iteration k
the method is required to solve a linear system of the
form

Ld dkx

� �
dkþ1
x ¼ fd; k ¼ 1; 2; . . .

where dx is the unknown variable, the operator Ldð�Þ
has been made linear by lagging the nonlinear term
1

rdxj j ; and fd has the terms which remain constant at
each k iteration.

Arranging equation (5) in the same way as described
before, the proposed FP iteration is given by

�k bkx
� �2

sinwk
xcosw

kþ1
x �r�r/kþ1

x

r/k
x

�� �� ¼ kðakx � gxÞðbkxsinwk
xÞ;

kcos2wk
x �r� r

rbkx
�� ��

 !
bkþ1
x ¼�kðakx � gxÞcoswk

x;

ðk�r� r
rakx
�� ��Þakþ1

x ¼�kðbkxcoswk
x � gxÞ

(6)

with wk
x ¼xxþ/k

x:
As can be observed in the first term of equation (6),

it is not possible to separate the term wkþ1
x from the

cosine function. To fix this, the cosine function is line-
arized in the following way

coswkþ1
x � coswk

x � /kþ1
x � /k

x

� �
sinwk

x

and the proposed FP iteration is given by9

k bkx
� �2

sin2wk
x �r� r

r/k
x

�� ��
 !

/kþ1
x ¼ kðakxbxsinwk

x

þ bkx
� �2

coswk
xsinw

k
x þ/k

x bkx
� �2

sin2wk
x � gxbxsinw

k
xÞ;

kcos2wk
x �r� r

rbkx
�� ��

 !
bkþ1
x ¼�k akxcosw

k
x � gxcosw

k
x

� �
;

k�r� r
rakx
�� ��

 !
akþ1
x ¼�kðbkxcoswk

x � gxÞ

(7)

Brito-Loeza et al.9 provide a detailed explanation of
the convergence proof and the numerical performance
of this method.
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Augmented Lagrangian method for TV model

A distinctive feature of the solution proposed in equa-
tion (7) is that all the PDE’s have the coefficient
1= rdxj j; which is quite hard to deal with it numerically
due to the inherent discontinuity. A typical solution to
this problem is to include a small constant to avoid

division by zero, that is 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rdxj j2 þ b

q
; but this

affect both the accuracy and efficiency of the solution.
Here, we will review an alternative to avoid this prob-
lem in a similar TV model. This will prove to be helpful
when we introduce our proposed ALM in the next
section.

The TV model for image denoising is given by7

min
u

FTVðuÞ ¼ k
2

Z
X
u� fð Þ2dxþ

Z
X
ruj jdx (8)

where u is the original image and f is the noisy image. It
is well known that the computation of the TV method
suffers from non-differentially due to the TV norm.7,12–14

Many numerical methods have been proposed to
improve this drawback; one of them is to convert the
above functional into a constrained optimization prob-
lem, where an auxiliary term is introduced to separate
the estimation of the non-differentiable term15–18

min
u;q

GTVðu; qÞ ¼ k
2

Z
X
u� fð Þ2dxþ

Z
X
qj jdx

subject to q ¼ ru
(9)

where q ¼ ðq1; q2ÞT is the auxiliary term. An efficient
solution to the problem shown in equation (9) is using
the ALM defined as18–20

min
u;q

max
l

LTV u; q; lð Þ ¼ k
2

Z
X
u� fð Þ2dxþ

Z
X
qj jdx

þ
Z
X
l � q�ruð Þdxþ r

2

Z
X
q�ruj j2dx

(10)

where l ¼ ðl1; l2ÞT is the vector of Lagrange multi-
pliers and r is a positive constant. The iterative process
to solve equation (10) is sketched in Algorithm 1.18–20

Algorithm 1: Augmented Lagrangian method for
the TV model

Data: u0 ¼ 0; q0 ¼ 0; l0 ¼ 0 k¼ 0
while stop criteria is not fulfilled do

Solve ukþ1; qkþ1
� �

� min
u;q

LTVðu; q; lk; fÞ (11)

then update lkþ1 ¼ lk þ r qkþ1 �rukþ1
� �

(12)

k ¼ kþ 1

end

Equation (11) is an unconstrained optimization

problem which is difficult to solve because variables u

and q are coupled. One alternative, proposed in litera-

ture,19,20 is to separate equation (11) in two subpro-

blems defined as

min
u

k
2

Z
X
u� fj j2dx�

Z
X
l � ru dxþ r

2

Z
X
q�ruj j2dx

(13)

given the term q, and

min
q

Z
X
qj jdxþ

Z
X
l � q dxþ r

2

Z
X
q�ruj j2dx (14)

given the term u.
The optimality condition of the problem shown in

equation (13) gives a linear equation and can be solved

efficiently using the Fourier Transform. On the other

side, the problem shown in equation (14) has a closed-

form solution known as soft-thresholding operator21–23

and is defined as19,20

q ¼
1

r
1� 1

jwj
� 	

w; if jwj > 1

0; if jwj � 1

8<
: (15)

where w ¼ rru� lk.

Augmented Lagrangian method for computing

discontinuous phase maps based on TV model

Following the idea described previously, we trans-

form the problem shown in equation (2) into a con-

strained one, and then solve it with the ALM. An

obvious advantage of using the ALM is that the

solution benefits from a fast solver and closed-form

solutions. In our case, unfortunately some terms in

equation (2) are nonlinear, so a fast solver cannot be

used in our solution; however, the described closed-

form solutions are susceptible to be used in our

approach

Legarda-Saenz and Brito-Loeza 3



The proposed ALM for equation (2) is defined as

min
/;a;b;q

max
l

L /x;bx;ax;q/;qb;qa;l/;lb;la;xx
� �

¼ k
2

Z
X
Ix� gxð Þ2dxþ

Z
X
q/
�� ��dxþZ

X
qbj jdxþ

Z
X
qaj jdx

þ
Z
X
l/ � q/�r/x

� �
dxþ

Z
X
lb � qb�rbxð Þdx

þ
Z
X
la � qa�raxð Þdxþ r

2

Z
X
q/�r/x

�� ��2dx
þ r

2

Z
X
qb�rbxj j2dxþ r

2

Z
X
qa�raxj j2dx

(16)

where r is a positive constant, qd ¼ ðq1; q2ÞTd is the aux-
iliary term, ld ¼ ðl1; l2ÞTd are Lagrange multipliers and
d is any variable representing /; b, or a.

As can be observed, the functional shown in equa-
tion (16) has a similar structure than the one shown in
equation (10), so we follow the procedure described in
the previous section to propose the solution of equa-
tion (16).

The minimization problem given in equation (16) is
separated into two subproblems. The first subproblem
is related to the solution of the terms /x; bx; and ax,
given the auxiliary terms q/; qb; and qa. This subprob-
lem is defined as

min
/

k
2

Z
X
Ix � gxð Þ2dx

�
Z
X
l/ � r/xdxþ

r

2

Z
X
q/ �r/x

�� ��2dx;
min
b

k
2

Z
X
Ix � gxð Þ2dx

�
Z
X
lb � rbxdxþ r

2

Z
X
qb �rbxj j2dx;

min
a

k
2

Z
X
Ix � gxð Þ2dx

�
Z
X
la � raxdxþ r

2

Z
X
qa �raxj j2dx

(17)

The second subproblem is related to the solution of
the auxiliary terms q/; qb; and qa; given the terms /x;
bx; and ax. This subproblem is defined as

min
q/

Z
X
q/
�� ��dxþ Z

X
l/ � q/ dxþ

r

2

Z
X
q/ �r/x

�� ��2dx;
min
qb

Z
X
qbj jdxþ

Z
X
lb � qb dxþ

r

2

Z
X
qb �rbxj j2dx;

min
qa

Z
X
qaj jdxþ

Z
X
la � qa dxþ

r

2

Z
X
qa �raxj j2dx

(18)

In the case of the functionals shown in equation

(17), the solution can be stated as follows:
The first-order optimality conditions of equation

(17) are given by

�kðax þ bxcoswx � gxÞðbxsinwxÞ
þ r � l/ þ rr � ðq/ �r/xÞ ¼ 0;

kðax þ bxcoswx � gxÞðcoswxÞ
þ r � lb þ rr � ðqb �rbxÞ ¼ 0;

kðax þ bxcoswx � gxÞ
þ r � la þ rr � ðqa �raxÞ ¼ 0

(19)

with boundary conditions

l/ � n ¼ 0; ðq/ �r/xÞ � n ¼ 0;

lb � n ¼ 0; ðqb �rbxÞ � n ¼ 0;

la � n ¼ 0; ðqa �raxÞ � n ¼ 0

The above equations have the same form than equa-

tion (5), so it is possible to express them as the FP

iteration shown in equation (7)

ðk bkx
� �2

sin2wk
x � rr � rÞ/kþ1

x ¼ kakxb
k
xsinw

k
x

þk bkx
� �2

coswk
xsinw

k
x þ k/k

x bkx
� �2

sin2wk
x

�kgxbkxsinw
k
x �r � lk/ � rr � qk/;

ðkcos2wk
x � rr � rÞbkþ1

x ¼ �kðakxcoswk
x � gxcosw

k
xÞ

�r � lkb � rr � qkb
ðk� rr � rÞakþ1

x ¼ �kðbkxcoswk
x � gxÞ � r � lka � rr � qka

(20)

On the other hand, in the case of the functionals

shown in equation (18), we found these to have the

same structure that in equation (14), so we can use

the soft-thresholding operator21–23 to solve them

qkþ1
d ¼

1

r
1� 1

jwdj
� 	

wd; if jwdj > 1

0; if jwdj � 1

8<
: (21)

where wd ¼ rrdkþ1
x � lkd; and d is any variable repre-

senting /; b, or a.
Finally, the update of the Lagrange multipliers is

carried out in the same way it was done in equation

(12). The iterative procedure to solve equation (16) is

given in Algorithm 2.

Algorithm 2: Augmented Lagrangian method for
equation (16)

Data: /0
x ¼ 0; b0x ¼ 0; a0x ¼ 0; q0/ ¼ 0; q0b ¼ 0; q0a ¼

0; l0/ ¼ 0; l0b ¼ 0; l0a ¼ 0
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k¼ 0
while stop criteria is not fulfilled do

Compute /kþ1
x ; bkþ1

x ; and akþ1
x using the FP iter-

ation shown in equation (20).
Compute qkþ1

/ ; qkþ1
b ; and qkþ1

a using equation
(21).
Update

lkþ1
/ ¼ lk/ þ r qkþ1

/ �r/kþ1
x

� �
lkþ1
b ¼ lkb þ r qkþ1

b �rbkþ1
x

� �
lkþ1
a ¼ lka þ r qkþ1

a �rakþ1
x

� � (22)

k ¼ kþ 1

end

Numerical experiments

To illustrate the performance of the ALM, we carried

out some numerical experiments using a Intel Core i7 @
2.40GHz laptop with Debian GNU/Linux 9 (64-bit)

and 16 GB of memory. In these experiments, we com-

pare our proposed method with the FP method shown

in equation (7). Both methods were implemented in C/

Cþþ. In our experiments, we used as stopping criteria

the following condition

jjdk � dk�1jj
jjdk�1jj � �

where � ¼ 10�5 and d is any variable representing /; b,
or a. For the ALM we use r ¼ 11:5; and for the FP

method we use b ¼ 10�3; which is the constant to avoid

division by zero.
For simplicity, we selected the regularization param-

eter k manually. However, well known methods can be

used to obtain the best parameter for this task, such as

those described in section 5.6 of Bertero and Boccacci.24

In addition, we use a normalized errorQ to compare the

phase-map estimation; this error is defined as25

Q l; �ð Þ ¼ jjl� �jj2
jjljj2 þ jj�jj2

where l and � are the signals to be compared. The

normalized error values vary between zero (for perfect

agreement) and one (for total disagreement).

Phase demodulation using synthetic fringe pattern

Here we present two experiments using a synthetic

fringe pattern of size 640� 480 pixels, generated in

similar way to that described in literature.6,8 Figure 1
shows the synthetic fringe pattern and the synthetic
phase term /x.

The first experiment was the demodulation of this
fringe pattern using the ALM and the FP method, both
with k ¼ 10. The resultant phase demodulations are
shown in Figure 2. In Figure 3, we show the middle
row of the estimated phase term /x. The normalized
error of the ALM was Q¼ 0.0243 and the time
employed to obtain the solution was 141 s using 655
iterations. On the other hand, the normalized error of
the FP method was Q¼ 0.0343 and the time employed
to obtain the solution was 340 s using 841 iterations.

In Figure 2, it can be seen that both methods suc-
cessfully demodulate the discontinuity found in the
synthetic fringe pattern. However, when analyzing
Figure 3, we found that the demodulation of the pro-
posed ALM is more precise than that of the FP
method. Moreover, the time and number of iterations
employed to obtain the solution are better than the FP
method. This is due to the influence of the term b on
the performance of the FP method: with a larger value
of this term, the speed of convergence of the method is
better but the accuracy of the solution gets worse. This
is not desirable in fringe analysis techniques.

The second experiment was the demodulation of the
fringe pattern shown in Figure 2 with different levels of
noise. In this experiment, we used k¼ 6 for both the
methods. The resultant performance of both methods is
shown in Figure 4. As can be observed, in this exper-
iment we found the same differences mentioned

(a) (b)

Figure 1. (a) Synthetic fringe pattern. (b) Synthetic phase
term /x.

(a) (b)

Figure 2. Estimated phase terms using (a) augmented
Lagrangian method, equation (16), and (b) fixed point method,
equation (7).

Legarda-Saenz and Brito-Loeza 5



previously: the proposed ALM demodulates the fringe

pattern faster and more accurately than the FP

method, even with noisy fringe patterns.

Phase demodulation using experimental fringe

patterns

Here we present the phase demodulation of a fringe

pattern obtained from a holographic interferometry

experiment,26 which consisted of the height measure-

ment of a micro-thin film. The fringe pattern obtained

from this experiment, with 640� 480 pixels, is shown in

Figure 5(a). Figure 5(b) shows a phase term /x estima-

tion of this experimental fringe pattern using Schwider–

Hariharan (4þ 1) algorithm.1,26 This estimation was

used as a reference in this experiment.
The demodulations of this experimental fringe pat-

tern using the ALM and the FP method are shown in

Figure 6, both with k ¼ 10. In Figure 7, we show the

middle column of the estimated phase term /x. The

time employed by the ALM to obtain the solution

was 430 s using 1995 iterations. On the other hand,

the FP method took 3288 s using 7445 iterations to

obtain the solution.
As can be observed in Figures 6 and 7, both methods

are able to demodulate the discontinuity found in the

experimental fringe pattern. These estimations can be

seen as the filtered version of the one shown in Figure 5

(b). One relevant aspect is that both methods preserve

the dynamic range of the phase term /x. On the other

hand, there are marked differences in the quality of the

estimation and in the numerical performance to obtain

it: the proposed ALM delivers a piecewise constant

surface while the FP method gives a smoother one.

Additionally, our proposal is several times faster than

the FP method.

(a) (b)

Figure 3. Middle row of the estimated phase terms using (a) augmented Lagrangian method, equation (16), and (b) fixed point
method, equation (7).
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Figure 4. Performance of the phase demodulation methods with different noise levels: (a) iterations employed and (b) the nor-
malized error Q.
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Conclusions

In this article, we present a reformulation of the
method presented in Legarda-Saenz et al.8 as a con-

strained minimization problem and we solve it using
the ALM. As can be seen in the numerical experiments,

the proposed method is able to accurately demodulate

a single fringe pattern with discontinuities. The numer-

ical solution of equation (16) results in a simple algo-

rithm, which is faster and preserves the dynamic range

of the phase term /x. An extra advantage of the pro-

posed method is its feasibility to be implemented on

dedicated hardware to obtain real-time processing.

This will be one aim of our future research.

(a) (b)

Figure 6. Estimated phase terms using (a) augmented Lagrangian method, equation (16), and (b) fixed point method, equation (7).

(a) (b)

Figure 5. (a) Experimental fringe pattern. (b) Estimated phase term /x using Schwider–Hariharan (4þ 1) algorithm.1,26

(a) (b)

Figure 7. Middle column of the estimated phase terms using (a) augmented Lagrangian method, equation (16), and (b) fixed point
method, equation (7).
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