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Abstract: Influenza remains one of the major infectious diseases that target humankind, therefore, un-
derstand transmission mechanisms and control strategies can help us obtain more accurate predictions.
There are many control strategies, one of them is vaccination. In this paper, our purpose is to extend
the incidence rate of a two-strain flu model with a single vaccination, which includes a wide range of
incidence rates among them, some cases are not monotonic nor concave, which may be used to reflect
media education or psychological effect. Our main aim is to mathematically analyze the effect of the
vaccine for strain 1, the general incidence rate of strain 1 and the general incidence rate of strain 2
on the dynamics of the model. Four equilibrium points were obtained and the global dynamics of the
model are completely determined via suitable Lyapunov functions. We illustrate our results by some
numerical simulations. Our results showed that the vaccination is always beneficial for controlling
strain 1, its impact on strain 2 depends on the force of infection of strain 2. Also, the psychological
effect is always beneficial for controlling the disease.

Keywords: general nonlinear incidence rate; mathematical model; basic reproduction number;
Lyapunov functional; globally asymptotically stable; vaccination; influenza

1. Introduction

Seasonal influenza is an acute respiratory infection caused by influenza viruses. Worldwide, these
annual epidemics are estimated to result in about 3 to 5 million cases of severe illness, and about
290,000 to 650,000 respiratory deaths [1]. This infection can have an endemic, epidemic or pandemic
behavior.

There were, three major flu pandemics during the 20th century, the so-called Spanish flu (HIN1) in
1918 was the most devastating pandemic. It has been estimated that the Spanish flu claimed around
40-50 million deaths (as much as 3% of the total population), and it also infected 20—40% of the
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whole population. In 1957-1958, the Asian flu or bird flu pandemic (H2N2) caused more than two
million deaths [2]. Unlike the Spanish flu, this time the infection-causing virus was detected earlier
due to the advancement of science and technology. A vaccine was made available but with limited
supply. After a decade (in 1968), a flu pandemic (H3N2) that originated again in Hong Kong hit
mankind. That flu pandemic also claimed one million lives. In 2009, the HIN1 swine flu is one of the
more publicized pandemics that attracted the attention of all scientists and health professionals in the
world and made them very much concerned. However, the pandemic did not result in great casualties
like before. As of July 2010, only about 18,000 related deaths had been reported [2]. Besides the 4
influenza pandemics since 1918, annual seasonal influenza epidemics have spread among nations on
smaller scales. There are many methods of preventing the spread of infectious disease, one of them
is vaccination. Vaccination is the administration of agent-specific, but relatively harmless, antigenic
components that in vaccinated individuals can induce protective immunity against the corresponding
infectious agent [3].

Influenza causes serious public-health problems around the world, therefore, we need to understand
transmission mechanisms and control strategies. Mathematical models also provided insight into the
severity of past influenza epidemics. Some models were used to investigate the three most devastating
historical pandemics of influenza in the 20th century [4—6]. There are a lot of pathogens with several
circulating strains.

An important factor when analyzing the dynamics of a disease is the way in which it is transmitted
from an infected individual to a healthy one. The incidence rate of a disease is defined as the number
of susceptible individuals that become infected per unit of time. It measures the number of new cases
of a disease in a period of time. There are different types of incidence functions that have been used
in literature in order to model the force of infection of a disease. For example, Rahman and Zou [2]
used the bilinear incidence rate 8S I. However, there are more realistic incidence rates than the bilinear
incidence rate, For instance, Capasso and his co-workers observed in the seventies [7] that the incidence
rate may increase more slowly as [ increases, so they proposed a saturated incidence rate %

Baba and Hincal [8] studied an epidemic model consisting of three strains of influenza (Il , I, and
I3) where we have vaccine for strain 1 (V) only, and force of infection % for strain 2. Baba et al. [9]
studied an epidemic model consisting of two strains of influenza (/; and ;) where force of infection
ff;lzz for strain 2. As models with more general incidence functions are considered, the dynamics of
the 2system become more complicated. Models with incidence functions of the form g(7)h(S) have
been studied, such as [10]. In the most general case, the transmission of the disease may be given by a
non-factorable function of S and /.

In this paper, our purpose is to study model considered in [2] modifying the force of infection in
the compartments /; and /,, by extending the incidence function to a more general form F (S, I), which
is based on the incidence rate studied in [11]. Our main aim is to mathematically analyze the effect of
the vaccine for strain 1, the general incidence rate of strain 1 (F(S, I;)), and the general incidence rate
of strain 2 (F,(S, 1)) on the dynamics of the model (2.2).

This paper is organized as follows. In section 2.1, we formulate the model. In section 3.1, we
investigate the disease dynamics described by the model. In section 3.2, we calculate the basic repro-
duction number. In section 3.3, we establish the existence of equilibrium points. In section 3.4, we
study the stability of the model. In section 3.5, provides some numeric simulations to illustrate our
main theoretical results. The paper ends with some remarks.
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2. Materials and method

2.1. The model

Rahman and Zou [2] proposed a two-strain model with a single vaccination, namely.

S = A=@BiL+BL+A)S

Vi = 1S —(u+kbL)V,

I, = BilS —ail

L = BbLS +kLV, —ayl,

R = yil, +y:b - uR. (2.1)

where A = r+u, @y =y +vi + i, @y = v, + v, + u. The compartments are S (¢), Vi(¢), 1;(¢), I,(¢) and
R(#) which denote the population of susceptible, vaccine of strain 1, infective with respect to strain 1,
infective with respect to strain 2 and removed individuals at time t, respectively. We assume that all
the parameters are positive constants that can be interpreted as follows:

e A is the birth rate.

e 4 is the death rate.

e r is the rate of vaccination with strain 1.

e k is the transmission coefficient of vaccinated individuals to strain 2.
e [3; is the transmission coefficient of susceptible individuals to strain 1.
e [3, is the transmission coefficient of susceptible individuals to strain 2.

e — is the average infection period of strain 1.
Y1

e — is the average infection period of strain 2.

Y2
e v; is the infection-induced death rate of strain 1.

e V5 is the infection-induced death rate of strain 2.

The modification of the model (2.1) is given by the following system:

S = A-F(S.1)-FxS,L)-AS

Vi = rS —(u+khL)V,

I = Fi(S. L) -ail

L = F)S,L)+kLV,—al,

R Yili +y2lh — uR. (2.2)

Whose state space is Ri ={S,Vi,,,L,R): S >0,V;, 20,1} > 0,1, > 0,R > 0} and subject to the
initial conditions S(0) =Sy >0, V1(0) = Vi >0, [;(0) = I} > 0, [,(0) = I, > 0 and R(0) = Ry > 0.
We make the following hypotheses on F;, i = 1,2.:
H1) Fi(S,I) = Lf(S,I;) with F;, f; € C3(R> —» R,) and F(0,1;) = F(S,0) = 0 forall S, 1; > 0.
of; of;
H2) %(S,I,-) > 0 and 8_£(S’Ii) <Oforall §,7; > 0.
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Fi(S, 1)

1

H3) I}i_)lg exists and is positive for all § > 0.
The first of this hypotheses is a basic requirement for any biologically feasible incidence rate, since the
disease cannot spread when the number of susceptible or infected individuals is zero.

As for (H2), the condition %(S , I;) > 0 ensures the monotonicity of f;(S, ;) on S, while Z—Q(S ,) <0
suggests that M is non-increasing with respect to /;. In the case when f; monotonically increases
with respect to both variables and is concave with respect to I;, the hypothesis (H2) naturally holds.
Concave incidence functions have been used to represent the saturation effect in the transmission rate
when the number of infected is very high and exposure to the disease is virtually certain.

(H3) is needed only to ensure that the basic reproduction number is well defined. Some examples

of incidence functions studied in the literature that satisfy (H1)—(H3) are as follows:

(C1) F(S,) =pBS1[2].
. BSI . . .
(C2) FS.D) = Z5 where ¢ > 0 describes the psychological effect of general public towards the
infective [8].

(C3) FS,D = %, where ¢ > 0 measures the psychological or inhibitory effect of the population [9].

A more thorough list can be found in [11]. It should be noted that model (2.2) extends as well as
generalizes many special cases.

3. Results

3.1. Disease dynamics described by the model

Lemma 1. Under the initial value (S o, V10, 110, I, Ro) € R the system (2.2) has a unique positive and
bounded solution in R for t > 0. All solutions ultimately enter and remain in the following bounded
and positively invariant region

A
Q= {(S,Vl,IbIz,R) ERIIN=S+Vi+,+L+R< ;}

Proof. The right hand side of system (2.2) is continuous and satisfies the Lipschitz condition in R3.
Then the system (2.2) has a unique solution (S (¢, Vi(¢), [;(?), L(¢), R(¢)) in [0, t,) for some ¢, > O.
Adding all equations in (2.2), the total population N =S + V| + I} + I, + R satisfies:

N S+Vi+L+L+R
A—,LLS _,UVI —/111 —/112 —/1R—V1]1 —V212
A-ul§S +Vi+L+L+R)
A — uN.

IA 1

A
The comparison theorem implies that lim sup N(f) < —. Hence N(¢) is bounded and so are all com-
—00

u
ponents S (¢), Vi(t), I,(t), I,(t) and R(¢). This in turn shows that the solution exists globally, i.e. for all
t > 0. Consequently, the solutions S (¢), V(t), I,(¢), I(t), R(t) of (2.2) are ultimately bounded in the
positively invariant region Q.
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Let (S(r), Vi(¢), I,(¢), I(¢), R(t)) be a solution of system (2.2) with positive initial conditions.
Assume by contradiction that there exists > 0 such that S(r) < 0, V,(¢) <0, L,(t) <0, I(t) < 0 or
R(#) < 0. By continuity of solutions, this implies that there is a minimal #, > 0 such that S (¢ty), V(%),
11 (%), I,(ty) or R(t) is zero.

If S(tp) = 0, then § = A > 0 at #, so S is increasing in a neighbourhood (fy — €, #, + €) of #,.
Thus S (t — £) < S(to) = 0, and since S(0) > 0 and S (o — £) < 0, there exists a #; € (0, 7 — §) with
S(t;) = 0. But #; < ty, which contradicts the minimality of 7, then S (#y) > 0.

If Vi(ty) = 0, then V; = rS(ty) > 0 at t,. So V, is increasing in a neighbourhood (fy — €, #, + €) of 1.
Thus Vi(t — 5) < Vi(t) = 0, and since V{(0) > 0 and V(1 — 5) < 0, there exists at; € (0, 1o — €/2)
with Vi(#;) = 0. But #; < #y, which contradicts the minimality of #,, then V;(#,) > 0.

If I,(ty) = 0, then I; = 0 at t,. On the other hand, any solution with I;(0) = O satisfies I(f) = 0
for all + > 0. Since 1;(0) > 0 and I,(ty) = 0, this contradicts the uniqueness of solutions. Similar
contradictions are obtained if we assume that I,(fg) = 0 or R(fy) = 0. Thus we conclude that the
solutions of (2.2) are positive for all # > 0. O

Since the equation for R is actually decoupled from the rest in Eq (2.2), we only need to consider
dynamics of the following four-dimensional sub-system:

S = A-F(S.I)-FyS,L)-AS

Vi = rS —(u+khL)V,

I = F(S,I)-ail

L, = FxS,bL)+kLV, —asl,. (3.1)

3.2. Basic reproduction number

The basic reproduction number is a dimensionless quantity denoted by Ry. It is defined as the
expected number of secondary infection cases caused by a single typical infective case during its entire
period of infectivity in a wholly susceptible population. Then, referring to the method of [12].

T‘: Fl(Sall)
) FQ(S,IQ) + k[zV] ’

o alll
(v T (a’zlz).
Then

OF(S,11)
F = (—azl 0

0F1(S0,0) 0
:( oh OF(S0.0) k/\]
F2(S0.0) | krA |
o 0 +

ol ua

Eo
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A rA

A pd ud’
infections (transmission matrix), while the V is invertible and is referred to as the transition matrix for
the model (3.1). It follows that,

where E, = (S°, V?, 0,0) = ,0, O) The matrix F is non-negative and is responsible for new

F/v/—l — ((_)l;i O
0 24+ AL
@ o
OF(S°,0)

where o; = " for i = 1, 2. Thus, the basic reproduction number can be calculated as

A
Ry = p(F'V'~1) = max {‘TI T2, K }

;. @  aud

where p(A) denotes the spectral radius of a matrix A. Let

_ (rl o krA
R, = and R, = Q—i az’M.

Then
R() = max{Rl , Rz}

Therefore Ry, R < Ro.

3.3. Existence of equilibrium solutions

The four possible equilibrium points for the system (3.1) are: Disease-free equilibrium, single-strain
(Iy)-infection, single-strain (/;)-infection and endemic equilibrium. The system (3.1) has disease-free
equilibrium E, = ( T ”3, 0, O) for all parameter values. We will now prove the existence of the other
equilibrium points. Flrst we will show some lemmas.

Lemma 2. Fori=1,2.
OF(S.1;) Iafi(SJi) N Fi(S, 1)

or, ol I

Also:
OF(S.1) _ FiS. 1)

o, T~ I

Proof. By HI1)
Fi(S. L) = Lif(S, 1)

Then

apiéi,m _ ﬁf(S: D, s
By H2) 5]01(0—52:11) <0, then

aFi;i, D s - F,-(i, 1)

O
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Lemma 3. For model (3.1), the closed set Q, = {(S, Vi, I;,L) e QIS <S%and V, < V?} is a positively
invariant set.

Proof. As Q is a positively invariant set for model (3.1), it will be enough to show that if S = S, then
S <0andif S <S%and V; = V?, then V; < 0.
IfS =S°, then

(o
Il

A—-F (8% 1) - FyS° 1) - AS°
AS° = F(S°, 1)) — F5(S°, 1) — AS°
~Fi(S°, 1) = F2(8°, 1) <0

IfS <S%and V, = VY, Then

Vi < 18— (u+kL)V)
rSO —uV? — klL,V? = —kLL,V? <0

O
Lemma 4. For i=1,2.
OF(S, 1) >0
oS
Proof. By (H1)
Fi(S’Ii) = Iifi(S’Ii)
Then
oF(S, 1) afi(S, I))
— = [[———= >0ByH2).
oS 85 y H2)
O

Remark 1. By (H2) given a and b, if S < a and I; > b, then fi(S,I;) < fi(a,b), i = 1,2.

Theorem 1. (1) The model (3.1) admits a unique single-strain (I)-infection equilibrium E, =
(S,Vy,1,,0) if and only if R, > 1.
(2) The model (3.1) admits a unique single-strain (I,)-infection equilibrium E, = (S, V,,0,1,) if and
only if R, > 1.

Proof. (1) If I, = 0 and R; > 1, we consider the system

A-F (S, [))-AS =0 (3.2)
r§ —uV, =0 (3.3)
Fi(S,I))—aiI; = 0. (3.4)
By (3.3) and (3.4)
s

Vi=—, Fi(S, 1) = ay1;.
u
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Substituting in (3.2).

A—all_l—/lS' =0
A—Chl_l
1 .

S =
Note that § > 0 if and only if /; < ﬁ I, being determined by the positive roots of the equation.

A_all_l

G(I) = Fi( ) —ailh. (3.5
Then o o
G/ = —a 3F1(A_3111,11) N aFl(A_jlll,Il) Y
YT S ol a
And
A
G(0) = Fl(z,()) = (0 by HI.
—a, OF1(5,0)  9F(3,0)
G'0) = = -
© X s e, ™
OF,(S°,0
= 1(—_) —a; by H1
ol
= al(ﬂ—l):al(R1—1)>O.
ag

Therefore G(I;) > 0 by I; sufficiently small. Also
A _
G(=) = F(0,I) = A = -A <0.
ay
Then Eq (3.5) has a positive root. Also if E; exists then
A8, L) —a; =0.
Note that § < S°. Then by Lemma 2 and remark 1

0 < ﬁ(SO,O)_Q]

_ ORGS0
- Al 1
= o (Rl - 1)

Then R, > 1.
Next, we shall show that /; is unique. From (3.4), it follows that

ag :fl(g’fl)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7862-7891.
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Using (H2) and Lemma 2, we have that =* ‘?Flg# < 0 and [, 22810 ‘(S I <. Furthermore, it can be
found that

_ ) TG 1 N ST CCL )
G,(Il) = + = - a].
A oS ol

V) STCL S R T X 2 _ o
= /11 (9;' +1 fl;I—I 1)4?]‘1(5,11)—]61(11,11)
—a aFl(A_jlll’I_l) _Gfl(S Il)

1 EXS h ol

Which implies that G(I)) strictly decreases at any of the zero points of (3.5). Let us suppose that
(3.5) has more than one positive root. Without loss of generality, we choose the one, denoted by
I\, that is the nearest to /;. Because of the continuity of G(I}), we must have G’(/;") > 0, which
results in a contradiction with the strictly decreasing property of G(/,) at all the zero points.

(2) If I, =0 and R, > 1, we consider the system

A-FyS,L)-A5 =0 (3.6)
S —(u+khL)V, =0 (3.7)
Fy(S, D) + kLV, — arlr = 0. (3.8)
By (3.7) and (3.8) 5
Vi= - RSB = —kV, + ash,
M+ kI,

Substituting in (3.6).
A—a2f2+kl~2\71 -A5 =0
krl, \ ~
(/l - et )S A - Ckzlz

/1+k12
A kD) — krl
((ﬂ"‘ 2) — rz)S A and,
,u+k12
A ki, — krl
(,U"‘(IJ‘H”) 2 7’2)5 A
/.l+k]2

+ kI,
§ = (A-anh) (”—)
Au + pkl,

Note that § > 0 if and only if /, < 2. I, being determined by the positive roots of the equation.

3 A - aol ki .
H() = F, (( fz 2)15”; ) 12) + kLY, — anl
M+ K
Ap+ (N = ey — kaols”
= F, = e
Au + kul,

o =2
Arkl, — aorki i
+[ Tihy = @Rl )—azlz. (3.9)

Au + kb,
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Then

(ko) (—kaady” — Ap) + Au(Ak — aapt — 2karly)
(/1,u + /,lkiz)z

- =2
Au+(Ak—arp)lh—kar ™ §
IF, ( L

oS

~ )
A/J+(Ak—(22/1)12 —kar I T
OF, (Mt 7,

H'(L) =

X

+

ol
(A Tk = axrkly) - (kp)aarkly”
= — Q.
(A + pklr)? ?

And
A
H)=F, (E’O) =0 by HI.

OF»(S°,0) . Ark
812 /l/,l
(0'2 Ark

a|—+
a, adu

H'(0)

— Q) by H1

—l)zaz(R2—1)>0.

Therefore H(I,) > 0 by I, sufficiently small. Also

A A
H(—):FQ(O,—)—A:—A<O.
(0%) (0%)

Then Eq (3.9) has a positive root. Also if E, exists then

fz(S,iz)‘i‘le —a, =0.

Note that by H1 we have —F»(§, ;) < 0, then A — AS > 0, therefore § < S® and V; < V?. Then
by Lemma 2 and remark 1

0 < f(8%0)+kV) - a,
dF,(S°,0)
= 8—12 + kV? — @)
an (Rz - 1) .

Then R, > 1.
Next, we shall show that I is unique. From (3.8), it follows that

@ —kVi = f(S, b).
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Furthermore, it can be found that

—aorp — Qo — 2a2/1k1~2 —2arkrl, — a2k21~22 + kAr

) = (A + kD)2
IPB. B ORG.B) o krled kB
as ob 1A+ kD)2
 —tarp — agpl® = 2aopkly — 2aokrly — ankPly’ + kAF
B (A + kD)2
Xan(S,fz) N I~2<9fz(§~,1~2) _ kr(apd + liA)I}.
as ol 1A+ kb)?

If —apru — aop® + kAr < 0, then H'(I,) < 0 which implies that H(l) strictly decreases at any of
the zero points of (3.9). Let us suppose that (3.9) has more than one positive root. Without loss of
generality, we choose the one, denoted by I,", that is the nearest to I,. Because of the continuity
of H(I,), we must have H'([,") > 0, which results in a contradiction with the strictly decreasing
property of H(L) at all the zero points.

~ —ray—a VF(I ra: (0%
If —ayru — anp® + kAr > 0. Next, we show that I, ¢ [0, 2_opt Nroae st kh) . Note that

ark

L 3 kI
S(h) = (A - b)) (L) .
Au + pkl,

Then

—aarpt — aopl? — 2anpkls — 2a0krly — ask*h’ + kAr

/(1) = .
> ) 1A + kD)2

? a’zk -

~ —-ray—a \rax(rag+a IV 4 ~ . .
If I, € [O 2_oant Voot , then S’(;) > 0, therefore S > S° which results in a

contradiction, since § < S°.

~ —raz—aopu+ \ras(raz+arpu+kA)
Thus I, € [ A

o~ ’Z]’ which implies that H(l,) strictly decreases at any

of the zero points of (3.9). Let us suppose that (3.9) has more than one positive root in

|:—l’112—(12/,t+ Vras(raz+arp+kA) A

ark > ap

]. Without loss of generality, we choose the one, denoted by L', that

is the nearest to [>. Note that H'(I," ) < 0 and H’(I,) < 0. Because of the continuity of H(J), we
must have H'(l,") > 0, which results in a contradiction.
O

The model (3.1) can have endemic infection equilibrium E3 = (S*, V},I}, ;). To find E3, we

consider the system

A=F(S*, 1) = Fy(S*, )= AS* = 0 (3.10)
rS*—(u+kI)V: =0 3.11)

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7862-7891.



7873

FuS*I)—arl} =0 (3.12)
Fa(S*, 1) + KLV — anl = 0. (3.13)
By (3.11), (3.12) and (3.13)
% rS* %% s %% %Y 7% %

Substituting in (3.10).
A - Cl’]]i< - 021§ + kI;VT -A5"=0

PRI T PR
prkr)” T O T TN
A+ (u+ )kl — krl;
K (IJ ) 2 2 S*:A—CY]IT—CKQI;
u+ kI
§ = (A =il — ol (LD
IR Rt VP
Note that $* > 0 if and only if I < 2225 and A —oili . I, being determined by the positive roots of

the equation.
(A — a1} — ar 1) (u + kI3)
Au + kul;

Gz(I;) = fz( ];) + kVik — Q.

I being determined by the positive roots of the equation.
(A —a I} —ar5)(u+kI3) | Y
At + kL S A

G(I) = fi (

3.4. Stability of equilibrium
In this section we will study the local and global stability of the equilibrium points.
A rA

Theorem 2. The disease-free equilibrium E, = (E R ,0, O) is unstable if Ry > 1 while it is locally

asymptotically stable if Ry < 1.

Proof. The Jacobian matrix of the model we get is the following one

_on _ 9Fy _9F _0F
as s A 0 ol ol
r —u— kil 0 —-kV,
J = i 0 F| —a 0 . (314)
as ‘on 1
o ki, 0 82+ kv -
Then Eq (3.14) at the disease-free equilibrium Ej is
_OF(S°0)  9Fy(s%0) 1 0 __OF1(8°,0) _OFy(8°,0)
as oS ol ol
7 r —u 0 —kV?
Ey — AF1(S°,0) AF1(5°,0)
25 0 an, @ 0
IF2(5°,0) IF»(S°,0) 0
s 0 0 5 T kV] —

Mathematical Biosciences and Engineering Volume 17, Issue 6, 7862-7891.
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OF(S°,0) dF(5°,0)
-4 0 B 131l - 23120
= L oF 508 o
0 0 22 —a 0
OF2(S°.0) | krA
0 0 0 —2(,)12 + T [0%)
-1 0 —0 —0)
roo—u 0 —kV?
S0 0 a(2-1) 0
o krA
0 0 0 o (2 + 22— 1)
-A 0 —01 —0)
|l -u 0 —kV?
10 0 (R -1 0 ' (3.15)
0 0 0 (0%) (Rz - 1)
Thus the eigenvalues of the above Eq (3.15) are
A ==A4, L =—pu, Z3=a;(R = 1), 44 =a(R, - 1). (3.16)

From (3.16), if Ry < 1, then 43,44 < 0 and we obtain that the disease-free equilibrium E, of Model
(3.1) is locally asymptotically stable. If R, > 1, then the disease-free equilibrium loses its stability. O

Theorem 3. Let R, = é%}j’o) + ka—‘;l The equilibrium E, is unstable if R, > 1 while it is locally

asymptotically stable if R, < 1.
Proof. Then Eq (3.14) at the equilibrium E| is

A11 0 A13 A14
_|lr —u 0 Ay
A S (3.17)

0 0 0 Ay

where
A, = —%—Mo
OF (S, I
A13 = _—16(1 1)<O
1
OF»(S,0
A= o 2;9(1 )
2
Ay = —kV1<0
OF (S, I
A31 = —léS 1)>0
OF (S, I _Jf(S, I, o _0f,(S, I
Az = %—al:Il%"‘fl(&ll)—al:h%ﬁo
1 1 1
OF,(S,0 - _
Ay = %+kV1—a2:a(R2—l).
2
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The last equality regarding Ass, is because Eq (3.4) implies that fi(S, ;) — ; = 0. The corresponding
characteristic polynomial is

P(x) = —(Ag — X)(X° + arx® + a1x + ap).
Then an eigenvalue is A44 and the remaining ones satisfy

(x> + ax® + ayx +ag) = 0.

where
a = —(An—pu+Asx)>0
ay = —pAy — Az + AAsz — ApAsg
ap = HAA3 — 1A 3A3.
Note that
OF (S, 1) OF (S, 1I) OF (S, 1) OF (S, I)
Andy — Apdy = (28900 ) (2 T0 0y
114133 13431 ( IS ol (03] ol 95
OF (S, 1) oF,(S, 1))
= =7 _ +a——= > 0.
( or, )TN T gs
Then a;,ay > 0 and
@may—ay = —(Ap+An)a; +pu(—pA — pAs3) + u(AnAsz — AzAsz) — ag

= —(An +As)a; + u(—pA — pAsz) > 0.

Applying the Routh—-Hurwitz criterion, we see that all roots of x*> + a>x*> + a; x + ay have negative real
parts. If R, > 1, then A > O therefore E; is unstable and if R, < 1, then Ay < O therefore E; is
stable. O

Remark 2. S < S° and V, < V?, then Ry < Ry, therefore if R, < 1 then R, < 1.

Theorem 4. Let R, = iaF'a(If’O). If 6an(}92,12) < 0 the equilibrium E, is unstable if R, > 1 while it is

locally asymptotically stable if Ry < 1.
Proof. Then Eq (3.14) at the equilibrium E; is

By 0 Bj3 By
r By 0 By

Jg, = 0 0 By 0] (3.18)
By By 0 By
Where
AF,(S, )
B, = —%—/1<0
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8F1(5’,0)
B = -—
13 ol
OF (S, 1)
B = —— =
14 ol
By = - — kiz <0
324 = —k\71 <0
dF(S,0) <
B33 = a—ll—alzal(ﬂl—l)
OFx(S, D)
B = ——>0
a s
B42 = kfz >0
OF(S, D) 5 - 0f(S, I
B = — 4 kVi-a,=L"—"""<0.
44 oL, tKkVI—ay =1 ol <

The last equality regarding By, is because Eq (3.8) implies that kV, —a, = — (S, ). The correspond-
ing characteristic polynomial is

P(x) = =(Bzs = X)(x* + byx” + by x + by)
Then (3.18) has an eigenvalue equal to Bs; and the remaining ones satisfy

(x> + box® + byx + by) = 0.

where

by = —(Bi1+ By + By) > 0.

by = BB + BnBuy + BBy — B14Bsy — BBy

by = =ByB1By — rBi4Bsyy + Bi4Bxy By + By ByBas.
Note that

OF(S, 1) 5 OF:(S, 0\,
B{Bss — Bu4uB = —A|———+kV, - +|—(kV,| - > 0.
1144 14D41 ( ol 1 — Q2 95 ( 1 az)

And

P 1) 67, o) - 41)

OF>(S. ) )
= (=) (20—[22) (—,U - klz)

OF(S, )
o0

—B2Bi1Bsys — rB14Bay + BisBnByy = (

)(—ﬂ) > 0.

Then by, by > 0. Also
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byby — by —Busby — By (BnBi1 + By Bas — BayByz) — By (B11Bay — B14Bay)
—Bi1 (ByBi1 + ByBys + B11Bas — Bi4Bay) + B11 BBy
+B2B11Bss + rB14By — B14By»Bs — B11BoyyBa

= —Buby — By (B By1 + B2y Byy — BoyByy)

—B11 (ByBi1 + By Bys + B11Bas — B14Bay) + rBisBy > 0.

Applying the Routh—-Hurwitz criterion, we see that all roots of x> + b,x> + b, x + b, have negative real
parts. If R, > 1, then B;; > 0 therefore E, is unstable and if R, < 1, then By; < O therefore E, is
stable. O

Remark 3. § < S°, then R, <R, therefore if Ry < 1 then R, < 1.
Remark 4. If 225-8) 5. then b; > 0i = 0,1,2.
2

Remark S. The Theorem 4 is valid for %Z’f” > 0 if byby — by > 0.

Theorem 5. If R, > 1 and R, > 1 then system (3.1) is uniformly persistent.

Proof. The result follows from an application of Theorem 4.6 in [13], with X; = int(R‘i) and X, =
bd(Rﬂ;) this choice is in accordance with the conditions stated in the theorem. Now, note that by of
Lemma 1 there exists a compact set Q in which all solution of system (3.1) initiated in R? ultimately
enter and remain forever after. The condition (Cj,) is easily verified for this set ;. On other hand, we
denote the omega limit set of the solution x(z, xy) of system (3.1) starting in xy € Ri by w(xp). Note
that w(xp) is bounded (Lemma 1), we need to determine the following set:

Q, = U w(y), where Y = {xo € Xa|x(t, x) € Xa, V¢ > 0} .

yer,

From the system equations (3.1) it follows that all solutions starting in bd(R?%) but not on the I; axis or
on the I, axis leave bd(Rﬁ). This implies that

Y, ={(S. V1.1, L) € bd®)|; = O or [ = 0}

Furthermore, we see that , = {Ey, £, E»}, then Ule {E;} 1s a covering of Q,, which is isolated (since
E; (i = 1,2,3) is a saddle point) and acyclic. Finally we need to prove that E; (i = 1,2,3) is a weak
repeller for X; to end the prove.

By definition E; is a weak repeller for X; if for every solution (S (¢), Vi(¢), I,(?), I,(¢)) starting in
(S0, Vio, 110, I20) € X

lim sup [|(S (¢), V1(2), 1,(1), I,(2)) — Ej|| > 0.

t—+00

We will first show that E, is a weak repeller for X;. Since R, > land R, > 1, then R, =
L(AS°0)+kV°) > 1and Ry = L(f£($°,0)) > 1, therefore f(S°,0) + kV* — @, > 0 and
£1(89,0)—a; > 0. Because of the continuity of (S, I,)+kV;—a, and f,(S, I,)—a;, there exists a suffi-
ciently small constant 17, > 0, such that f,(S°®—12,1m) —; > 0and f5(S° =12, 72) +k(V) —172) —a; > 0.
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Now, we suppose that E; is not a weak repeller for X;, i.e., there exists a solution
S@), Vi), 1,(v), I(1)) starting in (S, Vio, 110, I20) € X, such that

lim sup [[(S (2), Vi(2), I,(1), [,(t)) — Eol| = 0.

t—+00
Then exists 7 > 0 such that for every n7; > 0
SO—m <8S@®), V? = < Vi(),0 < I;(t) <my and 0 < L (1) <my YVt > Ty.

Letn; = n,, then for ¢t > T}.

I

I (fi(S, 1) —ay)
I (fl(SO —12,12) — 0/1)-

\%

and

L = L(H(S,L)+kVi—a)
> L(AS° = nm) +k(V) = m) - aa).

By comparison principle, we have
L) > [l(Tl)e(ﬁ(SO—nz,nz)—au)(t—Tl) and L(1) > [z(Tl)e(fz(SO—nz,nz)+k(V?—nz)—az)(t—T1)’ V> T,

Note that f](SO - 7]2,7]2) —a; >0, fz(So — 772,172) + k(V? - 7]2) —a; >0, Il(Tl) > 0 and Iz(T]) > 0,
which implies that lim /; = lim I, = oo, this gives a contradiction. Then E is a weak repeller for X.

t—00 t—00
Similarly it is shown that £, and E, are weak repeller for X;. Then we conclude that system (3.1)
is uniformly persistent. O

Further, it is proved in [14] uniform persistence implies the existence of an interior equilibrium
point. Therefore, we have established the following.

Theorem 6. The model (3.1) admits a endemic equilibrium E; = (S*,V{, I}, I;) if R, > 1 and R, > 1.

Theorem 7. If cic; — c3 > 0 and cica¢3 — ¢; — cies > 0, where

cp = —Cyu—C3-Cpn-Ch

¢ = —C41C1y — CspCo4 + CysCs3 + CyuCop + Cy4Cry — C31C13 + C33Co
+C33C11 + CnCyy

3 = —1rCpCiy+ Cy1C1uCs3 + C41C14Cx + CpCryCi3 + CypCoyCry + C44C31C3

—C44C33C — CysC33C 1 — CyuCChy + C31C13Co — C33C0Chy
¢y = 1CspCICs3 — Cq1C1aC33Cxn + CinCrsC51C 13 — CypCouC33C
—C44C31C13C + CyuC33C 0 Cy.

Then Ej is locally asymptotically stable.
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Proof. Then Eq (3.14) at the equilibrium Ej is

Chn 0 Ci3 Cu
r Cpn 0 Cu
C;yi 0 Cx O

Cy Cin 0 Cu

JE3 =

Where
OF((S7,17) OFxS™,I})
Ch = - 9 - XS -1<0
OF(S™, 1)
Co =~
1
OF>(S™, 1)
Cu =~
2
C22 = —/J—kI;<0
Cy = —ka<0
oF(S,I))
C31 = Tl>0
OF(S™,I7) 0fi(S*, I7) 0fi(S*, I7)
Cyyp = —— U g ==V (S ) —ay = [ ——" <
33 oI, g TS + /il ) —ai TS
OFy (8™, 13)
C41 = T2>O
Cp = KIL>0.
OFy(S™, I}) 0fa(S*, 1)
Cy = ———+kVi—-ap=—=—<0
“ ol, ! 2T n ol,

The corresponding characteristic polynomial is
_ 4 3 2
p(x) = X"+ c1 X + X" + c3x + ¢y
Note that ¢; > 0,

—C41Ciy + CyCi1 = Cyy(Cry + Cyy) = Cyy (V] —2) > 0
C33Ci —C31C13 = Cx(Cry + C3y) = C31 (—ay) > 0.

then ¢, > 0, If Cy4 > 0 then ¢3 > 0 and ¢4 > 0, while if Cy4 < 0 we have that

C41C14C33 + C44C31C13 — CuC33C11 = —CusC33(Chy + Cay + C31) — Casa1)(C31)
—(kV{ = a3)C33(=C41) > 0

—C44C0(Cry + Cyy + C31 + 1) — (Cra)()(r)
+(kV] = a2)C2(Cay + 1) + CaaCxC51 > 0.

—1rCpCiy — CyuCruChy + C41C14Cxp

and let

* = 1CsC14C33 + CyuC33C0C11 — Cy1C14C33C — CyuC3C13C.
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then

* = —Cxi3(=CuaCrp(Ciy + Cyy + C31 + 1) = (Cra)()(r) + (kV] — @2)C(Cyy + 1)
+C44C2C31) — C44C31C13Cn
= —C33(—CyaCpu(Cy1 + Cyy + C31 + 1) = (Cra)(u)(r) + (ka — @2)Cp(Cyy + 1))
+C44C0C31(ay) > 0.

Then ¢; > 0 and ¢4 > 0. If ¢j¢; — ¢3 > 0 and ¢jcac3 — €5 — c1es > 0 by Routh—Hurwitz criterion, we
see that all roots of x* + ¢;x* + c,x? + c3x + ¢4 have negative real parts, then Ej is locally asymptotically
stable. O

3.4.1. Global stability of equilibria

In this section, we study the global properties of the equilibria. We use Lyapunov function to show
the global stabilities. Such Lyapunov functions all take advantage of the properties of the function.

gx) =x-1-In(x).

which is positive in R, except at x = 1, where it vanishes.

Theorem 8. The DFE E is globally asymptotically stable if,
Ry < 1.
Proof. Consider the Lyapunov function
VS, Vi,11,hL) =1 + I,

Since 11,1, > 0, then V(S, Vi, 11, 1) > 0 and V(S, Vi, 1, I,) attains zero at I = I, = 0.
Now, we need to show V < 0.

vV = L+
= F(S. 1) —al; + F5(S, ) + kLLV, — axl,.
= L(/i(S, 1) —a) + L(/(S, L) +kV) —ay).
ForS <S%and V; < V!
V< L(/(S°0)—a)) + L(AES,0) + kV) — ).
F(S°,0) OF>(S°,0) o
= L[|—— - + L | ———= +kV; —
1( ol (03] 2 ol 1 — @2
= ml; (ﬂ] - 1) + arl, (Rz - 1) <0.
Furthermore, ‘fi—‘; = 0 if and only if I, = I, = 0, so the largest invariant set contained in

{(S, Vi.i, ) € Qll% = O} is the hyperplane I; = I, = 0, By LaSalle’s invariant principle, this im-
plies that all solution in €; approach the hyperplane I, = I, = 0 as t — oo. Also, All solution of
(3.1) contained in such plane satisfy S = A — AS, V| = rS — uV,, which implies that S — 2 and
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Vi — ;—;\ ast — oo, that is, all of these solution approach E,. Therefore we conclude that E is globally

asymptotically stable in Q.
Now we will show that every solution (S(2),V,(t),1i(t),L(f)) € R%, where t — o
(S (t)’ Vl(t)a Il(t)’ IZ(t)) € Qla let (S(t)a Vl(t)711(t)a IZ(I)) € Ri Then

< A-AS

S <

: e . A 0 0 .

By the comparison principle lim sup S (¢) < i S". Then S(r) < S for ¢ sufficiently large.
t—00

Alsoif S(¢) < §°.

Vi < 18— (u+kL)V, <rS°—uv,

SO
By the comparison principle lim sup V(7) < el V?. Therefore Ej is globally asymptotically stable.
—00
K O
From now on, we assume that
H4) Fori=1,2. fi(S,I;) = Sgi(S, I,).
Lemma S. Let a > 0 be a constant, fori = 1,2 lf% > 0 for all I, then
I F«(S.I .
L F(S.0)\(FiS.a) |\
a Fi(S,a))\F(S,1I)
Proof. Note that
L _F(SD\(FSa) |\ _ L, _fS.D)(ES.)
a  Fi(S,a)]\F(S,I) ~oa\ fi(S,@))\F«(S, 1)
If a > I;, then
(S. I F.
Ji(S, 1)) > 1 and i(S,a) S 1
fi(§,a) Fi(S, 1)
If a < I;, then
Ji(S, ;) <1and Fi(S,a) <1
fi(S,a) Fi(S,I)
Therefore
I F . .
L FS.D\(FS.9 |\ _,
a Fi(S,a))\Fi(S,I)
O

Theorem 9. Suppose that MIB(—ISI’I‘) > 0 for all I, then E, is globally asymptotically stable if,

R2<1.
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Proof. Consider the Lyapunov function
VS, Vi.11,h) = I,

Since I, > 0, then V(S,V,,1;,,) > 0 and V(S, Vy, I, I,) attains zero at I, = 0. Now, we need to show
vV <0.

V = 12
Fz(S, 12) + k12V1 —arls.
L(/(S, L) +kV) — ay).

ForS <S%and V, < V?

<.
IA

L(£(S°,0) + kV) — a).

(an(SO, 0)

L|—
ol

a’zlz (Rz - 1) < 0.

+kV? —

Furthermore, “fi—‘t/ = 0 if and only if I, = 0. Suppose that (S(?), V1(¢), I,(?), I5(¢)) is a solution of (3.1)

contained entirely in the set M = {(S(?), V,(1),1,(t), 1,(1)) € Q;|V = 0}. Then, I, = 0 and, from the
above inequalities, we have I, = 0. Thus, the largest positively invariant set contained in M is the plane
I, = 0. By LaSalle’s invariance principle, this implies that all solutions in approach the plane I, = 0 as
t — oo. On the other hand, solutions of (3.1) contained in such plane satisfy

S = A-Fi(S,I)-AS

Vi = 1S —(wV

I = Fi(S, 1) —ai1y.

Now we will show that S () — §, V() — V, and I,(t) — I, Consider the Lyapunov function

S FI(ST,IE)) _ (11)
V(S,V., 1)) = 1 - 2 Udy + Le| 2.
S, Vi, ) fs ( Fioe D) Iy + 1,8 7

Note that 1 — 281 = LAC=(ED) w12y £(S, ) - £(S, 1) = 0if S > § and (S, [)- S, 1)) <

Fi(e.)) — Fl_(X:I_l)
0if S < §, then f; (1 - %) dy > O for all §. Therefore, V(S, Vi, 1) > 0 and V(S, Vi, I)) attains

zeroatS(t) =S, and I,(¢) = I,.
Now, we need to show V < 0.

vo= (1-0S S+(1_’_1)1'1

Fi(S. 1)) I
Fi(S,1)) I

= (1-—A-F((S,[))=AS)+ |1 — = (F(S, 1)) —a;]
FiS.T) ( 1S, 1) ) ( 11)( 1S, L) —ailh)
RS o

= |1—-——(AS + F((S,I)) - F((S,I;)) - AS
FiS.T) ( 1S, 1) 108, 1) )
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+F(S, 1) — a1, _I_lfl(Sall) + a1

_ Fi(S, I F (S, I, _
= /l(S—S)(l—l(—_l))+(1—I(—-I))Fl(s’ll)—Fl(S,Il)
Fi(S, 1) Fi(S, 1)
F (S, I I,F((S, I _ _
+1(—_1)F1(S,Il)+F1(S,Il)—M—Ilfl(S,Il)+F1(S,11)
Fi(S, 1) 1
Fi(S, I Fi(S,I 1 I (S, 1 ~ -
_ (2_ 1 _1)+ 1( _1)_71_ 1fl(_ _1))F1(S,11)
Fi(S, L)) F«(S. L) L F«(S. L)
_ Fi(S, I
+/l(S—S)(1—1(—_1)).
Fi(S, 1)
Note that
_ F{(S, I, _ S. 1
/l(S—S)(l—l(—_l)):/l(S—S)(l—fl(—_l))SO
Fi(S, 1) fi(S, 1)
and
2_1"1(§,1_1)+171(5,11)_1_1_1_1f1(S,11) _ 2—F1(S’I_1)+F1(S’Il)—1—1
Fi(S, L) F«S, ) L F(S.h) Fi(S, L)) Fi(S. ) |
_I_1F1(5,11) 1_F1(S,11)F1(S’I_1)
LF(S, 1) Fi(S,[)F(S, )
IF\(S, 1) IFi(S, 1)
LF(S, 1) ©LF(S.I))
_ 3_1‘71(5,1_1)_1_1F1(S,11)_ IF(S, 1))
Fi(S, ) §LF(S,L) ©LF(S, 1)
L Fi(S,I)\(Fi(S. 1)
- - — -1]<0. 3.19
(11 Fl(S,Il))(Fl(S’Il) )< G19

The last inequality is due to the Lemma 5 and the relation of the geometric and arithmetic means, then
V < 0. Furthermore, &¢ = 0 if and only if S = § and I; = I}, which implies that S — S, I; — I, and
I, —» 0 ast — oo. By LaSalle’s invariant principle, this implies that all solutions in €, approach the
plane S = 8,1, = I, and I, = 0 as t — oo. Also, All solutions of (3.1) contained in such plane satisfy
V| = rS — uV,, which implies that V; — 7S = V) as t — oo, that is, all of these solution approach E;.
Therefore we conclude that E is globally asymptotically stable in €2;. O

FiS.0) | FiSI) _ L 01 £1(S,11) : :
Corollary 1. If 2 — Feh YT Reh "L~ RED S 0 and R, < 1 then E, is globally asymptotically
stable.
Theorem 10. Suppose that 61’26(_}?2,12) > 0 for all I, then E, is globally asymptotically stable if,
_FR&h  SEE.L _ Vi _SVi
R] < 1 al’ld2 Fz(S,iz) S:Fz(sj-z) V~l SV] S O

Proof. Consider the Lyapunov function
V(S7 Vl$[l912) = Il'

Since I; > 0, then V(S, V,,1;,1,) > 0 and V(S, Vi, I, I;) attains zero at I; = 0. Now, we need to show
vV <0.
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Fi(S, L) —ail
L(fi(S, 1) —ay)

For S <S°

L(A(8°,0) - ay)

0
oI,

<
A

Furthermore, ‘fi—‘t/ = 0 if and only if I; = 0. Suppose that (S (¢), Vi(?), [,(?), I5(?)) is a solution of (3.1)
contained entirely in the set M = {(S(?), V1(2), I,(t), I(¥)) € |V = 0}. Then, I; = 0 and, from the
above inequalities, we have I; = 0. Thus, the largest positively invariant set contained in M 1is the plane
I, = 0. By LaSalle’s invariance principle, this implies that all solutions in approach the plane /; = 0 as
t — oo. On the other hand, solutions of (3.1) contained in such plane satisfy.

S = A-FyS,hL)-AS
V1 = rS - (/.l + k[z)vl
12 = FZ(S, 12) + kV112 - (1’2[2.

Now we will show that S(f) — S, V() — V, and I,(¢) — I, Consider the Lyapunov function
S Fy(S, I A

V(S, Vi, L) = f (1 - 2(—~2))d)( + Vlg(T‘) + 12g(é).

3 Fy(x, ) Vi 14}

Now, we need to show V < 0.

(1—M)S‘ +(1 —E)Vl +(1 —1—2)1'2
FZ(S,IZ) Vl IZ

F>($, L) 4
(1 - m) (A=FyS,L)—AS) + (1 - 71) (rS — (u+kl)V1)

1%

I
" (1 - 1_2) (F2(S, D) + kLV) — axlh)
2

— (1_ FZ(S’I})

{:2(5,1_2))(/15 + Fao(S, 1) — Fa(S, 1) —/lS) +rS — (u+khL)V,

SV ~ - - .
—1”71 + (/.l + k[z)V] + FZ(S, 12) + k12V1 - a212 - IQfQ(S, 12) - k12V1 + a’zlz
1

- Fo (S, I . ~Fy(S, I Fo(S, I-
_ ,u(S—S)(l— Z(S’~2))+r(S—S Z(S’~2)—S+S 2(S,~2))
Fy(S, 1) Fy(S, 1) Fy(S, 1)
+(1 B Fz(S,{z))Fz(S,iz)_'_ FZ(S’{2)F2(S,I2)+rS
Fy(S, 1) Fy(S, 1)
S % . LF,S,L) . L.
_rTVI —7”—1 +rS - w LS, L)+ FaS, 1)
V, Vi I
. FyS, I . Fy(S, I Fy(S, T %
_ ,u(S—S)(l— Z(S’~2))+rS(2— 2(S,~2)+5~’ 2(&3)_&_&)
Fy(S, 1) Fy(S, L) SF)S,L) Vi SV,
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+(2—FQ(S’{Z)+F2(S’I~2)—I—E—IZfZ(:S’{Z))FZ(S,I}).
Fy(S, L) FyS,L) L FxS,h)
Note that
. F5(S, I
u(S—S)(l—Z(—E))so
Fy(S, 1)

2_F2(§,f2)+F2(5,Iz)_é_izfz(S,lz) <0
Fy(S,h) FxS,L) L FaS.h) ~

The last inequality is due to the Lemma 5 and the relation of the geometric and arithmetic means, then
V < 0. Furthermore, V = O if and only if S = §, I, = [, and V, = V,. Therefore E, is globally
asymptotically stable. O

Remark 6. Note that if % > 0, then

, PG.Dh) SREL) Vi SV _ . Vi S S
FyS.h)  SFxS.L) Vi Svi Vi Svi S
3 S T
+(_]+§)(1_82(5,~2))S0.
N 8(S, )

_ RG&.h) | FS.h) L _ Lf(S.h) < _ B@E.h Sf"z@fz) _n_ §_\7| <
Corollary 2. If2 reh T ReD "L heh =0 Ri <land2 Fsh T sk v 5w =0

then E, is globally asymptotically stable.

Theorem 11. E; is globally asymptotically stable if

N st SgiS.y) - _S* _ SeaS.b) (38 _ Vi _ 2N
Fi(S ,11)(2 < S*gl(s*’IT))+F2(S ,12)(2 5 s*g2<s*,1;))+r5 (3 < — 7 S*Vl)+

pS (2= 5 = L)+ L (S*gi(S. 1) — ) + L (S*ga(S. L) + kVi* — @) < 0.
Proof. Assume Ej; exists. Consider the Lyapunov function

S Vl Il 12
VS, Vi1, 1) = S* (—)+v* g2+ me2).
(S, Vi, 11, ) 8l5 lg(vik) 18(1T) 28(12)
Where g(x) = x — 1 — In(x). Then V(S, Vi, 1, ) > 0 and V(S, Vi, I}, I,) attains zero at E3.
Now, we need to show V < 0.

"\ . Ve I\ I\,
=2 ) (1= ) v (1= 2+ (1= 2)i
( S) ( Vl)l ( 11)1 ( L7

*

(1 - SF) (A —F(S,1,) = Fa(S, ) — AS) + (1 - “//1 )(rS = (u+kl)Vy)
1

1%

*

r I
+ (1 —~ I—‘) (F\(S, 1) — ail}) + (1 - 1—2) (Fx(S, L) + kL,V| — a 1)
1 2

S.
AN=F(S,1) - FxS,I}) - AS —A? + 118718, 1) + LS (S, L) + AS™
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*

\%
+rS —uVy —kLV, —rS Vl +uVi +kLV; + F\(S, 1)) — ay 0, = I, fi(S, 1)
1
+C¥11T + Fz(S, Iz) + kIle —arl, — I;fz(S, Iz) - kI;Vl + CYzI;

S*
= (Fi(S", 1)+ F2(S*, L)+ AS™) = AS — (F(S", 1)) + Fa(S™, 1) +/lS*)—

1%
+1,S*21(S, 1) + LS gx(S, ) + AS* + 1S — uV, —rSV +uVi +kLV?

-yl —Iikfl(S,Il)+Fl(S*,rf)—az[z—rzkfz(S,Iz)—kI Vi+ Fy(S* ,I)
+k, Vi

*

= (2F1(S ) = Fu(S ,11)?—11f1(5,11))+(2F2(S ) = Fa(S ,12)?)

5 f2(S, ) + (248 a5 s 1S —rs Ay st — g1
- — — - rS—-—rS—+rS" —
2212 S vV, v

+ (LS g1(S, 1)) — aLy) + (IS 78S, ) + kL VY — a»l)
S*  Sgi(S, 1) S* 582(5,12))

= S22 -—-———=|+FS,D|2-— -
: 1)( S S*gl(S*,Ii‘)) 2 2)( S 5788 1)

s v, SV st s
wrst(3- - Lo +ust 2o -2
: ( s v s K
+11 (S*gl(S,Il) —al)+12 (S*gz(S,Iz) +kVik —0/2).

By the relation of geometric and arithmetic means, we conclude V < 0, with equality holding only at
the equilibrium E5. Therefore E; is globally asymptotically stable. O

3.5. Numerical simulations

In this section, we present some numerical simulations of the solutions for system (3.1) to verify
the results obtained in section 3.3 and give examples to illustrate theorems in section 3.4. In system
(3.1), we set:

,315 1 BaS1h

Fi(S, )= — YA FyS, L) = 1+ 08 , A =200,y, =0.07,y,=0.09, u=0.02,v; =0.1, v, = 0.1
144 2

and k = 0.00002.

In this case

182 R — ,B]A al’ld ﬂz ,BZA + krA

ﬁ
gi1(S, ) = Iz,gz( ) = T+58 al @A) T aud

+4

Parameters and units are arbitrary and have been used for illustration purposes only. Anyway, when
considering a realistic scenario such values could be derived from statistical data.

e Example 6.1. In system (3.1), we set 8; = 0.00003, r = 0.1, 8, = 0.0002, £; = 0.7 and &, = 0.9.
Then S ~ 1667, V° ~ 8333, R, ~ 0.2632 R, ~ 0.7947. By Theorem 8, we see that the disease-
free equilibrium Ej is globally asymptotically stable. Numerical simulation illustrates our result
(see Figure 1).
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Time series solution with initial condition (7000,1000,1000,1500)
10000

S
8000 —\/ "
—
5 1
S 6000 )
8 2
S
& 4000
a
2000
0 . J
0 50 100 150
Time
Time series solution with initial condition (100,1500,1500,6000)
10000
S
8000 —V [
— |
s 1
£ 6000 |
K — |,
2
o 4000
a
2000
0 . . J
0 50 100 150 200 250 300

Time

Figure 1. Numerical simulation of (3.1) indicates that Ej is globally asymptotically stable.

Time series solution with initial condition (7000,1000,1000,1500)
10000

S
8000 —\/
— |
s 1
£ 6000 |
K — |,
2
o 4000
a
2000
0 T T T T T y
0 50 100 150 200 250 300
Time
Time series solution with initial condition (100,1500,1500,1000)
6000
—
5000 —
5 4000 -_— :1
£ 3000 2
a
S
. 2000
1000
0 N N N N N 1
0 50 100 150 200 250 300

Time

Figure 2. Numerical simulation of (3.1) indicates that E; is globally asymptotically stable.

Example 6.2. In system (3.1), we set 8; = 0.0002, r = 0.1, 5, = 0.0002, {; = 0 and £, = 0.9.
Then S ~ 950, V| ~ 4750, [} ~ 453, R, ~ 1.7544, R, ~ 0.7947. By Theorem 9, we see that the
E, is globally asymptotically stable. Numerical simulation illustrates our result (see Figure 2).
Example 6.3. In system (3.1), we set §; = 0.00003, r = 0.1, B, = 0.0002, {; = 0.7 and
& = 0.001. Then § ~ 1317, V, ~ 4814, [, ~ 368, R, ~ 0.2632, R, ~ 1.3889 and 2 — 22 +
% - %: - i—:ﬁ: < 0 (see Figure 3). By corollary 2, we see that the E; is globally asymptotically
stable. Numerical simulation illustrates our result (see Figure 4).

Example 6.4. In system (3.1), we set 8; = 0.0002, r = 0.01, 8, = 0.0002, {; = 0.0001 and
£, = 0.0001. Then R, ~ 7.0175, R, ~ 4.1270, § ~ 1134, § ~ 5310, V| ~ 2655, R, ~ 3.555
and R, ~ 1.194. Then by Theorem 6, E5 = (§*, V], I}, I) exists (S* ~ 1133, V| ~ 320, I ~ 44,
I = T74), Alsoc; = 0.2501 ¢; = 0.0171 ¢c3 = 3.4759%107% ¢4 ~ 3.4759%3.9242107%, clcz—cg ~
0.0043 and cjcac3 — €3 — cies & 1.1218e x 107 by Theorem 7, Ej is locally asymptotically

stable. Also Ej satisfies FI(S*,IT)(Z -5 %) + FZ(S*,I;)(Z -5 %) +ust(2-5 - &)+

L (S*g1(S, 1) —ay) + L (S*g2(S, L) +kVi* —ap) < 0. By Theorem 11, we see that the E; is globally
asymptotically stable. Numerical simulation illustrates our result (see Figure 5).
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Time series solution with initial condition (7000,1000,1000,1500)
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8000 —_—
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Figure 4. Numerical simulation of (3.1) indicates that E;, is globally asymptotically stable.

Time series solution with initial condition (7000,1000,1000,1500)
8000

—C

s \/

6000 400
c

— |
1

2 200 I
< 4000 —
2

0
a 90 100 © 110 120
2000
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Time
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1500
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Figure 5. Numerical simulation of (3.1) indicates that E5 is globally asymptotically stable.
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4. Conclusions and discussions

In this paper,we studied a system of ordinary differential equations to model the disease dynamics
of two strains of influenza with only one vaccination for strain 1 being implemented, and general
incidence rate for strain 1 and strain 2. We obtained four equilibrium points:

e E, disease-free equilibrium, /; and I, are both zero.

e [ single-strain-infection equilibria, /, are zero.

e F, single-strain-infection-equilibria, /; are zero.

e F5 double-strain-infection equilibrium, /; and I, are both positive.

We have investigated the topics of existence and non-existence of equilibrium points and their stabil-
ities. We also used the next-generation matrix method to obtain two threshold quantities R; and R,,
called the basic reproduction ratios for strain 1 and 2 respectively. It was shown that the global sta-
bility of each of the equilibrium points depends on the magnitude of these threshold quantities. More
precisely, we have proved the following:

o If Ry < 1 the disease free equilibrium E|, is globally asymptotically stable and if R, > 1, then E|
is unstable.

o If R; > 1 the model (3.1) admits a unique single-strain-infection-equilibria E;. Also if R, < 1
then E; is globally asymptotically stable and if R, > 1, then E, is unstable.

e If R, > 1 the model (3.1) admits a unique single-strain-infection equilibria E,. Also if R; < 1
and 2 — 2?;2; iggg - % - ;—“2 < 0, then E, is globally asymptotically stable and if R, > 1,
then E, is unstable.

e If R, > 1 and R, > 1 the model (3.1) admits a double strain infection equilibrium E;. Also
it IS (2- 5 - 2 1 R (2- 5 - S s (3= % - - S )4 ust (-5 - $) +
L(S*g1(S, 1)) —a) + L (S* g2(S, L) +kVi* — ) < 0. Then Ej is globally asymptotically stable.

In order to discuss the meaning of our mathematical results, let us rewrite the two key indirect param-
eters R; and R, in terms of the rate of vaccination (), the incidence rate of strain 1 (F(S, 1)) and the
incidence rate of strain 2 (F,(S, I5)) as shown below:
hER0) o RER0) ke
1= 2=
(03] an a’ZIU(r + /J)

Also, the derivative of R, with respect to r is,

A (on(E0)
a(r + p)? oS
. . af(%.0) . o
Note that R;(r) is decreasing and R,(r) depends on —£t—. Now we will analyse some cases of inci-

dence rate.

A
(C1) Fi(S,I) = B:SI,, then 6-”12; 9 _p,

N/ af(2,0
(C2) F(S.1) = £5%. then )

Bi
()"

95
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_ BiSI 0h(50) _
(C3) Fi(S, 1) = 250 then 222 = g,

1+41%°
Note that for (C1) and (C3), R,(r) is increasing if §; < k, R,(r) is decreasing if 8; > k and R,(r) is
constant if 5; = k. For (C2), Ry(r) is increasing if 8; < k ({ # 0). If B; > k Ry(r) is increasing if
ZikA e GRA
Gk TH<T and decreasing if Gk TH>T
Furthermore, if the force of infection of strain 1 is (C2), then R, =

Bi . )
T (50> hote that R; is de

Boh | kA hote that R, is

creasing in ;. If the force of infection of strain 2 is (C2), then R, = aan T apt

decreasing in {5.

With the above information and the results in section 3.4, we conclude that the vaccination is always
beneficial for controlling strain 1, its impact on strain 2 depends on the force of infection of strain 2.
For example, if the force of infection of strain 2 is (C2), the impact of vaccination depends on values
of B,, kand &,. If &, = 0 and B, > k it plays a positive role and if {; = 0 and 8, < k, it has a negative
impact in controlling strain 2. This is reasonable because larger k (than $,) means that vaccinated
individuals are more likely to be infected by strain 2 than those who are not vaccinated, and thus, is
helpful to strain 2. Smaller k (than ,) implies the opposite. If £, # 0 and 8, < k, it plays a negative
role and if £, # 0 and B, > k, not necessarily has a positivity impact in controlling strain 2. This is
reasonable because larger k (than 3,) means that vaccinated individuals are more likely to be infected
by strain 2 than those who are not vaccinated, but if ¢, is large it means that the population is taking
precautions to avoid the infection of strain 2. Also, we conclude that ; (of the force of infection (C2))
is always beneficial for controlling strain 1 and ¢, (of the force of infection (C2)) is always beneficial
for controlling strain 2, it means that it is very important that people are taking precautions not to get
infected.
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